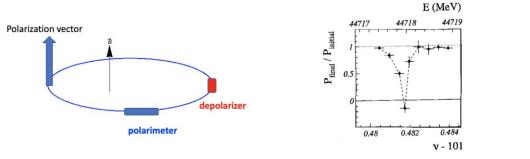
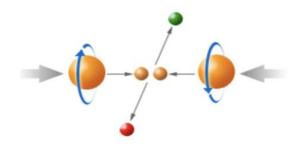
CEPC polarization


Zhe Duan

On behalf of CEPC Beam Polarization Working Group 2022. 01. 14

Motivation of CEPC Z-pole polarized beam program

Vertically polarized beams in the arc


- Beam energy calibration via the resonant depolarization technique
- Essential for precision measurements of Z
 and W properties
- At least 5% ~ 10% vertical polarization, for
 both e+ and e- beams

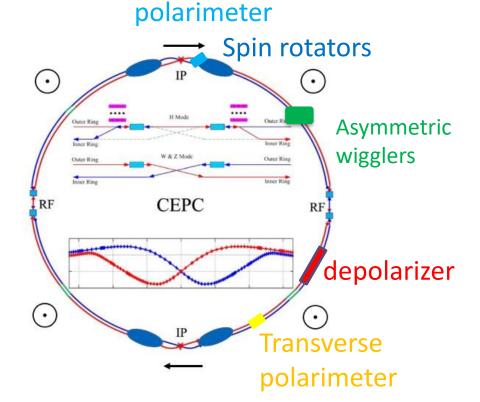
L. Arnaudon, et al., Z. Phys. C 66, 45-62 (1995).

Longitudinally polarized beams at IPs

- Beneficial to colliding beam physics
 programs at Z, W and Higgs
- Figure of merit: Luminosity * f(Pe+, Pe-)
- ~50% or more longitudinal polarization is desired, for one beam, or both beams

Final deliverable: a detailed design report of polarized beam operation @ Z-pole

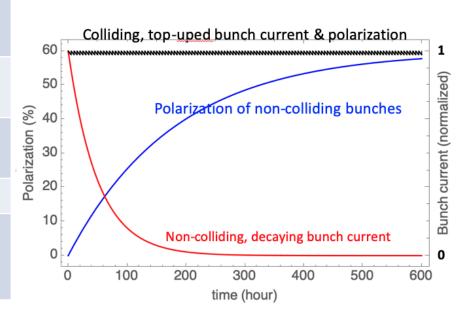
Wish list and key questions


Wish list

- A small fraction of non-colliding bunches with at least 5% vertical polarization in the arc, depolarize one-by-one to carry out resonant depolarization measurements
- All colliding bunches have > 50% time-averaged longitudinal polarization at IPs
- Luminosity is not significantly affected
- Beam lifetime is sufficient long so that top-up injection is feasible

Key questions

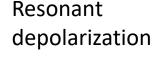
- How to polarize the beams?
- How to adjust the polarization direction?
- How to measure the polarization?
- How to reach a high luminosity, a high polarization and a reasonable beam lifetime?


Note: the current study is based on CEPC CDR parameters, to reach the first polarization specific design, then we'll update according to the CEPC TDR design parameters

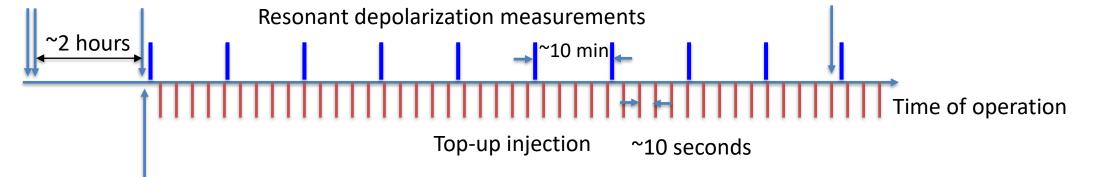
Longitudinal

How to polarize the e+/e- beam?

	Non-colliding bunches	Colliding bunches
Beam lifetime	20~100 hours, a high bunch current is not necessary	~2 hours
Injection frequency	Every 20~100 hours	Top-up injection, every ~ 10 seconds
Evolution of beam polarization	Exponential build-up Time scale ~ several hundred hours	Saw-tooth near the level of injected beam polarization
Usage	Resonant depolarization	Colliding beam experiments
Method to realize desired beam polarization	Use asymmetric wigglers to reduce self-polarization build-up time	Inject polarized beam


Note: injection of polarized beam for colliding experiments, enables resonant depolarization measurement of some colliding bunches, which could help reduce the systematic errors of RD on non-colliding bunches only.

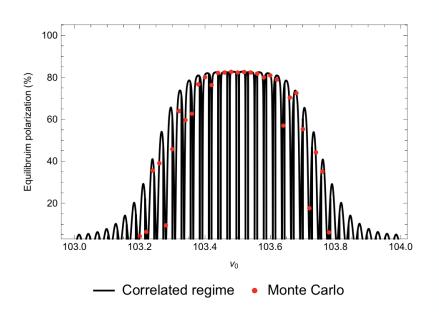
Basic operation scenario

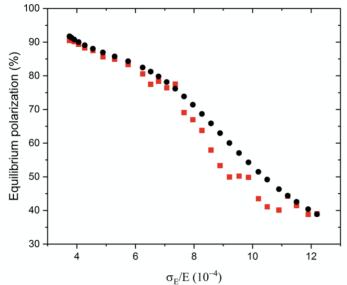

Baseline assumptions:

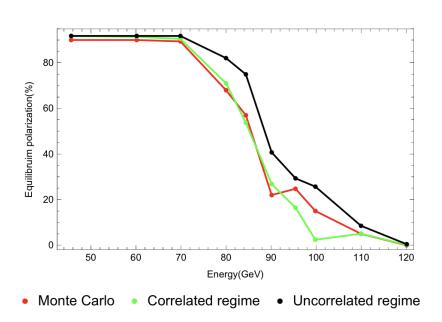
- The injector can supply polarized e- beam (>50%), and unpolarized e+ beam (by default)
- Resonant depolarization requires a bunch polarization > 5%
 - Inject ~100 unpolarized non-colliding beams
 - Turn-on asym. wigglers to boost self-polarization
 - Turn-off asym. wigglers

 Replenish one decayed unpolarized non-colliding bunch ~ every hour

Colliding beam experiments

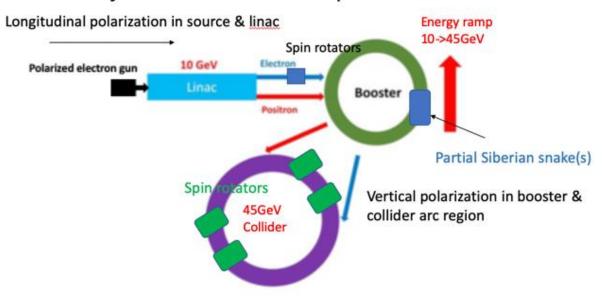



- Inject ~ 12000 polarized e- and unpolarized e+ bunches
- Start colliding beam experiments

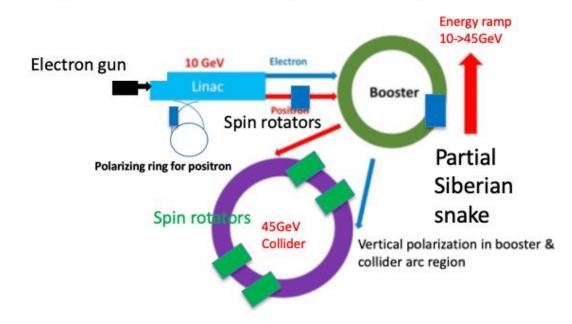

each fill could last many hours Unless hardware failure occurs

Equilibrium beam polarization in the collider ring

- CEPC CDR lattices w/ errors & corrections are converted from SAD to BMAD/PTC
- Monte-Carlo simulations based on PTC, for evaluation of equilibrium beam polarization
- The depolarization effects at ultra-high energies are also explored.



Injector chain to supply polarized e- beam

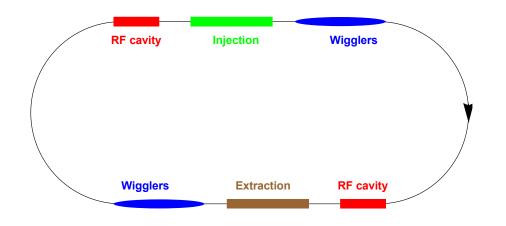

Injector modification for polarized e-

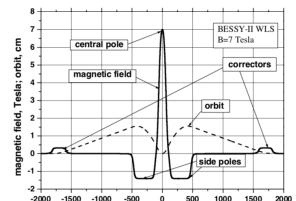
Key research topics:

- Polarized electron source
- e+ polarizing ring
- Spin rotators in the linac-to-booster transport line
- Siberian snakes in the booster

Injector modification for polarized e+ (optional)

Polarized e+/e- source


Polarized e- source is matured technology

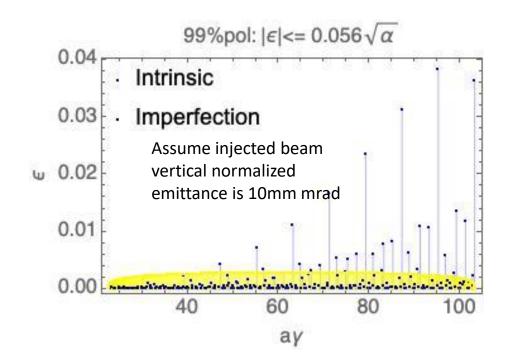

Parameter	ILC(TDR)	CLIC(3TeV)	CEPC
Electrons/microbunch	2×10 ¹⁰	0.6×10^{10}	>0.94×10 ¹⁰
Charge / microbunch	3.2nC	1nC	1.5nC
Number of microbunches	1312	312	1
Macropulse repetition rate	5	50	100
Average current from gun	21μΑ	15μΑ	0.15μΑ
Polarization	>80%	>80%	>80%

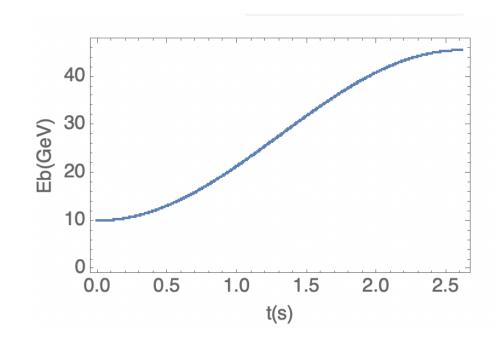
Parameters of CEPC polarized electron source				
Gun type Photocathode DC Gun				
Cathode material Super-lattice GaAs/GaAsP				
HV	150-200kV			
QE 0.5%				
Polarization ≥85%				
Electrons/bunch 2×10 ¹⁰				
Repetition rate 100Hz				
Drive laser 780nm (±20nm), 10µJ@1ns				

- A polarizing/damping ring for e+, using high-field asymmetric wigglers
 - Detailed design study is under way
 - Low-emittance lattice design w/ very strong wigglers

 An asymmetric wiggler @BESSY-II as WLS,

longitudinal coordinate, mm

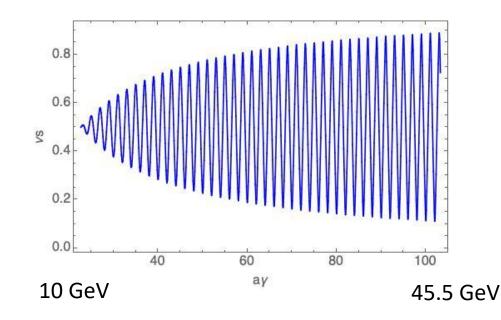

A. M. Batrakov, et al., APAC 2001, pp251-253.


Tentative parameters

Parameter	Value
beam energy(GeV)	2.5
circumference(m)	240
wiggler total length(m)	22
$B_{+}/B_{-}(T)$	15/1.5
$U_0(\text{MeV})$	3.5
$\tau_{BKS}(s)$	20
rms energy spread	~ 0.003
natural emittance(nm)	~ 25
damping time(ms)	~ 1
momentum compaction factor	0.001
RF voltage(MV)	4.8
bunch length(mm)	12.6
bunch number	200
bunch spacing(ns)	4
beam current(mA)	< 600
bunch charge(nC)	< 2.5
beam store time(s)	>20
beam polarization before extraction	>58%

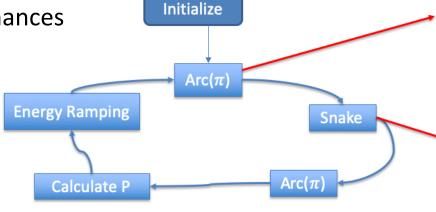
Depolarization in CEPC Booster

- The strongest spin resonance strength of CEPC booster is comparable to AGS
 - Single isolated spin resonances
- Ramping speed is ~100 times faster compared to AGS
 - It is unlikely to use jump quad or AC dipole schemes to mitigate depolarization
- Without special measures, the beam will get depolarized after acceleration to 45.5GeV



Maintenance of beam polarization in CEPC Booster

- Depolarization during acceleration can be mitigated with Siberian snake(s)
- Solenoid-based Siberian snake
 - $\int B_{\text{SOL}} dl \simeq \frac{10.479}{1+a} p\left(\frac{\text{GeV}}{c}\right)$: Full snake: 105 T·m @ 10GeV ~ 476T·m@ 45.5GeV
 - One potential cost-effective solution: superconducting solenoids fixed in strength
 - full snake at injection, partial snake at higher energy
 - Alternative schemes will also be explored

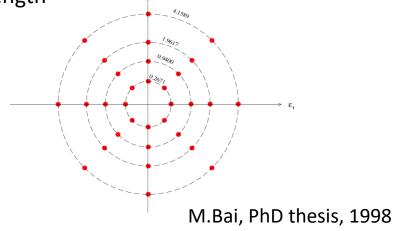


Lattice independent simulations

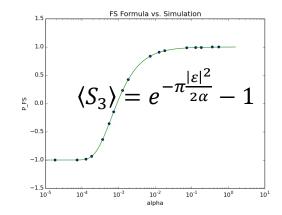
 Launch lattice-independent simulations for fast evaluation of the effectiveness of the snakes scheme

Single-isolated spin resonances

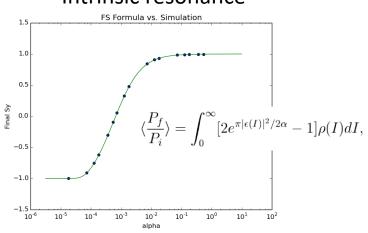
One (partial) snake


Arc module uses constant $a\gamma$ model in which arc and resonance are considered together:

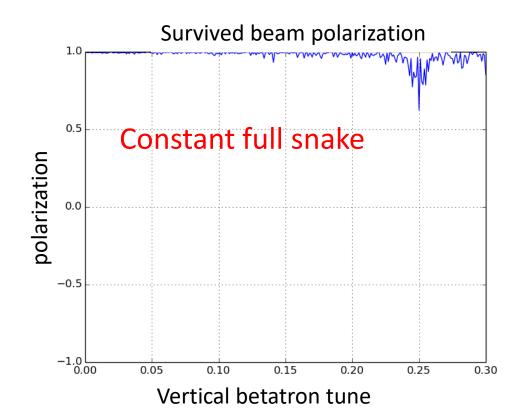
Benchmark: single spin resonance: $|\varepsilon| = 0.02$, K = 30. scan ramping rate α


$$\psi(\theta_f) = e^{-\frac{i}{2}K\theta_f\sigma_3}e^{\frac{i}{2}[\delta\sigma_3 + \epsilon_R\sigma_1 - \epsilon_I\sigma_2](\theta_f - \theta_i)}e^{\frac{i}{2}K\theta_i\sigma_3}\psi(\theta_i) \equiv t(\theta_f,\theta_i)\psi(\theta_i)$$

Siberian snake is placed at π from the observation point

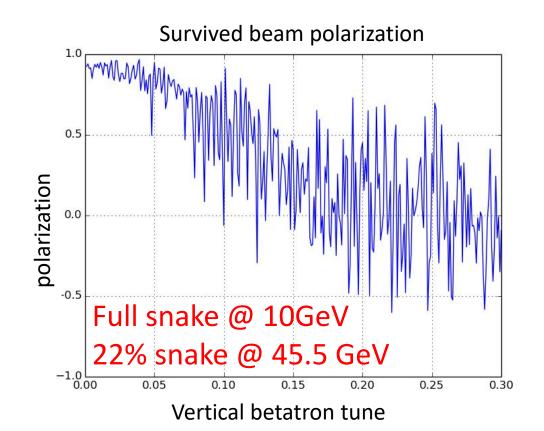

Launch a beam of 32 particles to account for amplitude dependence of intrinsic resonance strength

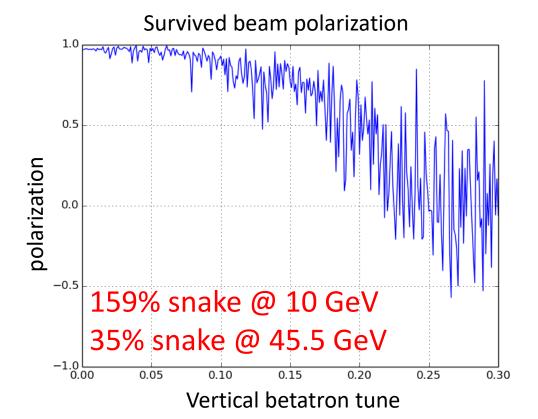
Imperfect resonance



Intrinsic resonance

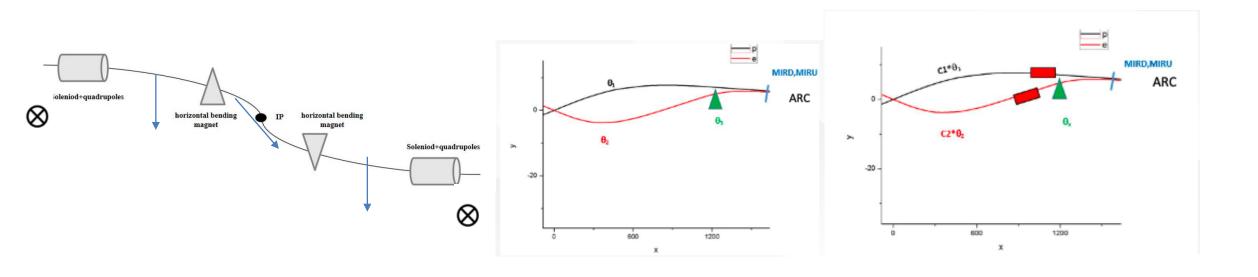
Lattice independent simulations


- 10GeV -> 45.5GeV acceleration simulation
 - Assume a 100% polarized injected beam
 - Injected beam particles are matched to the \vec{n} of the booster
 - Realistic ramping curve (10GeV -> 45.6 GeV: 2.62 second), w/o SR effects



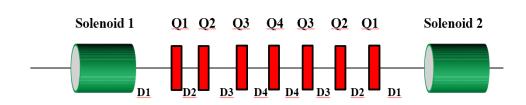
Lattice independent simulations

- 10GeV -> 45.5GeV acceleration simulation
 - The partial snake scheme on the right looks better
 - Vertical betatron tune needs to be moved to <0.07, to ensure > 80% polarization transmission
 - Next, will launch lattice-dependent simulations to verify this conclusion
 - Design of the snake is in line with the spin rotators in the collider ring



Spin rotators in the CEPC CDR lattice

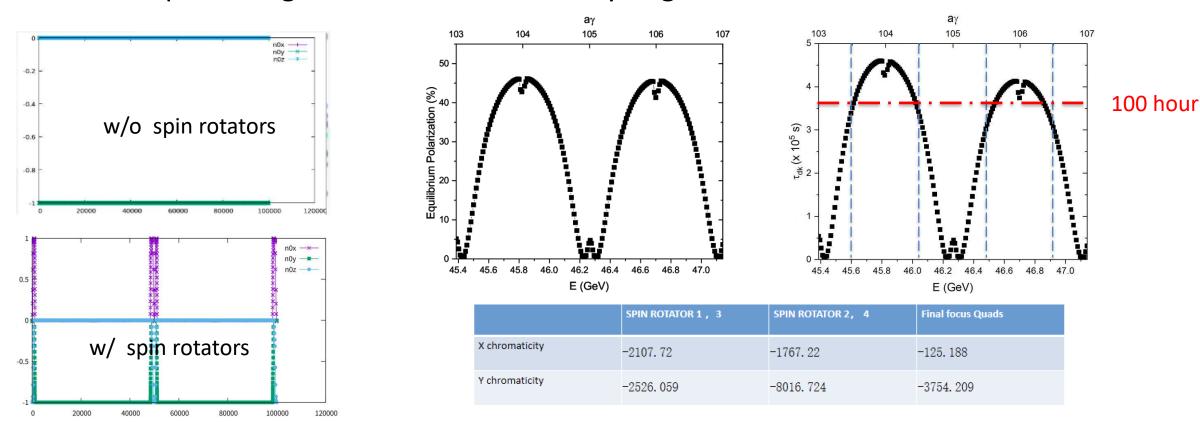
First attempt to implement spin rotators into the collider ring lattice


- Solenoid spin rotators is implemented at the first short straight sections next to IR
- Modified the ring layout -> $\theta_{\rm bend} = 15 {\rm mrad}$
 - Keep the IR geometry
 - Keep the transverse distance between e+ and e- rings D=0.35m
 - Scale the bending angle before and after the short straight section

Spin rotators in the CEPC CDR lattice

First attempt to implement spin rotators into the collider ring lattice

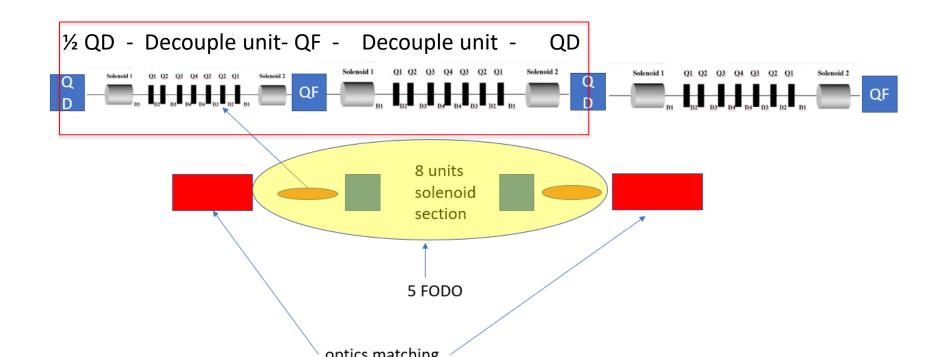
- Each spin rotator $\int B_{\rm SOL} dl \simeq 240 \, \mathrm{T \cdot m}$
- Assume each solenoid is 8 T, ~1.5m
- Each decouple unit cell contains two solenoids and matching quads, total length ~ 10 m
- Replace the existing drifts in the lattice by such unit cells
- Each spin rotator consists of 10 unit cells


Decouple unit

Solenoids		Quadrupoles		Drifts	
Length (m)	Field strength (T)	$\frac{\frac{\partial B_y/\partial x}{B\rho}}{(m^{-2})}$	Length (m)	Length (m)	Total Length (m)
0		Q1: -0.83		D1: 0.2	
1.48895	8	Q2: 1.35	0.8	D2: 0.2	9.97796
		Q3: -0.90		D3: 0.2	
		Q4: -0.82		D4: 0.1	

Spin rotators in the CEPC CDR lattice

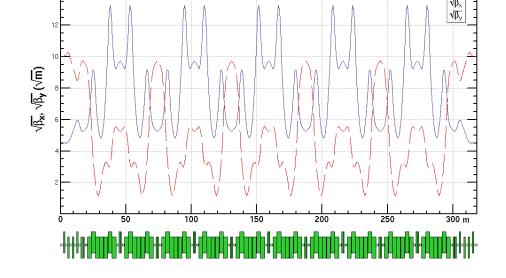
First attempt to implement spin rotators into the collider ring lattice


- The spin rotators do rotate the spin direction as expected
- SLIM simulation shows $\tau_{DK} \gg \tau_b$, then $P_{avg} \approx P_{inj}$ during top-up injection
- The compact design leads to uncomfortably large local chromaticities

New design of spin rotators

Redesign of the spin rotators and implementation into lattice

- A new version of CEPC lattice is under design
 - The geometric requirement is built-in
 - A space of ~300m is reserved for each spin rotator, in a long straight section near IR
- A new modular design of spin rotator is also under way
 - Decouple unit => Drift; FODO: O is replaced by Decouple unit;


New design of spin rotators

Redesign of the spin rotators

- Unit cell length is streched from 10 m -> 25 m
- max gradient of quads is reduced by a factor of 10
- Optics matching : betax/betay=20m/100m, alpha=0
- Will be integrated into the new lattice and investigate the influence on spin & obital motion

Solenoids		Quadrupoles		Drifts	
Length (m)	Field strength (T)	$\frac{\frac{\partial B_y/\partial x}{B\rho}}{(m^{-2})}$	Length (m)	Length (m)	Total Length (m)
74.		Q1: -0.83		D1: 0.2	
1.48895	8	Q2: 1.35	0.8	D2: 0.2	9.97796
		Q3: -0.90		D3: 0.2	
		Q4: -0.82		D4: 0.1	

:	Solenoids	Quadrupoles		Drifts	
Length (m)	Field strength (T)	$\frac{\frac{\partial B_y/\partial x}{B\rho}}{(m^{-2})}$	Length (m)	Length (m)	Total Length (m)
1.48898	8	Q1: -7.14502E-2 Q2: 1.17444E-1 Q3: -7.44823E-2 Q4: -6.94446E-2	3	D1: 0.2 D2: 0.2 D3: 0.2 D4: 0.1	25.37796

chromaticity	New	Final focus Quads	
X	-290.4	-125.2	
Υ	-168.3	-3754.2	

Summary

- The overall operation scheme of polarized beam CEPC-Z is outlined.
- The injector chain of the polarized beams is being studied, in particular the maintainance of polarized beam in the booster using Siberian snakes has been simulated.
- Solenoid-based spin rotators were implemented in CEPC CDR lattices, they rotate the spin direction as expected, a new modular design shows promising results.
- Alternative subjects in the to do list
 - Understand the influence of beam-beam interaction on beam polarization in the collider ring
 - Spin rotators in the transport lines
 - Detailed design of e+ polarizing ring

Thank you for your attention!

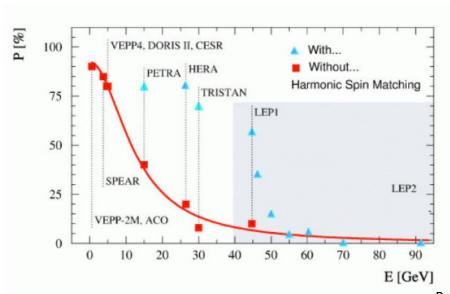
Backup

Formulas

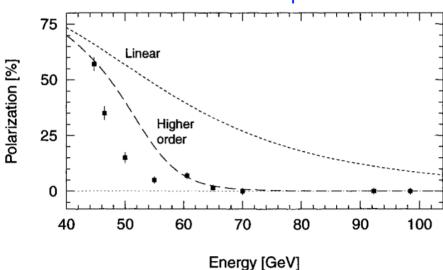
Beam polarization evolution in an electron storage ring between injections

$$P(t) = P_{\rm ens,DK} \left(1 - e^{-t/\tau_{\rm DK}} \right) + P_0 e^{-t/\tau_{\rm DK}}, \quad \frac{1}{\tau_{DK}} = \frac{1}{\tau_{BKS}} + \frac{1}{\tau_{\rm dep}}, P_{\rm ens,DK} \approx \frac{92\%}{1 + \tau_{BKS}/\tau_{\rm dep}} \qquad \tau_0^{-1} [\rm s^{-1}] \approx \frac{2\pi}{99} \frac{E[\rm GeV]^5}{C[\rm m] \rho[\rm m]^2}$$

<u>Time-averaged beam polarization in an electron storage ring during top-up injection</u>


Self-polarization:
equilibrium beam —
polarization in the ring

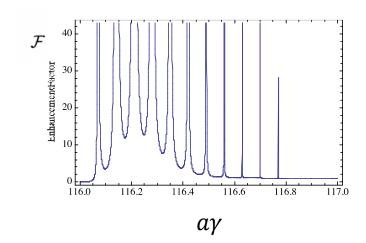
$$P_{\text{avg}} = \frac{P_{\text{ens,DK}}}{1 + \tau_{\text{DK}}/\tau_{\text{b}}} + \frac{P_{\text{inj}}}{1 + \tau_{\text{b}}/\tau_{\text{DK}}}$$


Injected beam polarization

Competition between beam decay/injection and polarization build-up in the ring

Scaling with beam energy

LEP measured beam polarization


R. Assmann, et al, AIP Conference Proceeding, 570, 169 (2001).

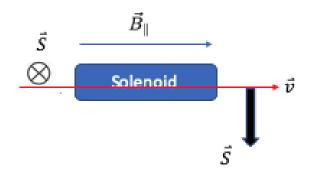
$$P = \frac{P_{ST}}{1 + (\alpha E)^2 \mathcal{F}}$$

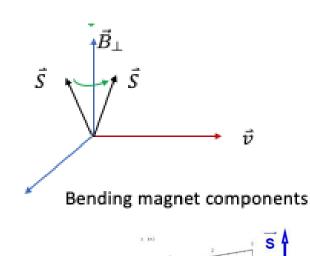
$$\mathcal{F} = \left\langle \left| \frac{\partial \zeta}{\partial \varepsilon} \right|^2 \right\rangle / \left\langle \left| \frac{\partial \zeta}{\partial \varepsilon} \right|^2 \right\rangle_{\sigma=0} = \left[(\Delta \nu)^2 - Q_s^2 \right]^2 \sum_{m=-\infty}^{\infty} \frac{e^{-\sigma^2} I_m(\sigma^2)}{\left[(\Delta \nu + mQ_s)^2 - Q_s^2 \right]^2}$$

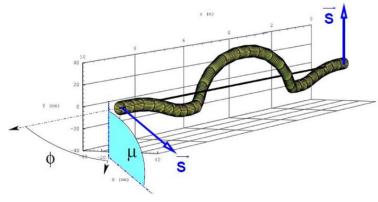
 $\sigma = a\gamma\sigma_{\varepsilon}/Q_{s}$ \mathcal{F} becomes remarkable at higher beam energy

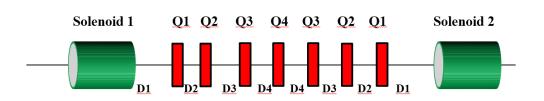
[1] Derbenev, Kondratenko, Skrinsky, PA 9 247, 1979. [2]S. R. Mane, arXiv:1406.0561.

How to adjust the polarization direction?


Devices to rotate spin around a direction in horizontal plane by a certain angle θ


<u>Transverse magnetic field</u> (Not favored for CEPC energies)


- $-\int B_{\perp} dl$ independent of energy (approximately)
- Vertical orbit excursion $\propto 1/\gamma$, $\propto L$
- − synchrotron radiation power $\propto \gamma^2$, $\propto 1/L$
- Examples: helical dipole, interleaved H&V bends


Longitudinal magnetic field(Under study)

- No orbit excursion, no radiation problem
- $-\int B_{\perp} dl \propto 1/\gamma$
- Need quadrupoles to decouple the beam

