

# **Progress of the High Field Magnet R&D at IHEP**





Jan 14 2022



中国科学院高能物理研究所 Institute of High Energy Physics, CAS

#### **Colleagues & Collaborators**

IHEP-CAS: Chengtao Wang, Yingzhe Wang, Juan Wang, Chunyan Li, Rui Kang, Huanli Yao, Zhen Zhang, Jinrui Shi, Ze Feng, Wei Li, Ao Feng, Menglin Wang, Huan Yang, Ling Zhao, Zhilong Hou, Zhongxiu Liu,...
IEE-CAS: Dongliang Wang, Xianping Zhang, Yanwei Ma,...
IMP-CAS: Wei Wu, Xianjin Ou, Dongsheng Ni, Wenjie Liang,...
THU: Timing Qu, Yufan Yan,.....

### Magnet Design Scope for SPPC



### $E[GeV] = 0.3 \times B[T] \times \rho[m]$

| High Energy Circular<br>Colliders for next<br>decades | SPPC                                                                                | FCC                                      |
|-------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|
| Proposed institution                                  | IHEP-CAS, China                                                                     | CERN, Europe                             |
| Proposed dates                                        | 2012                                                                                | 2013                                     |
| Site of the project                                   | China                                                                               | Europe                                   |
| Baseline technology                                   | <b>IBS 12~24 T</b> to reach <b>75-150</b> TeV,<br>Nb <sub>3</sub> Sn etc as options | Nb <sub>3</sub> Sn 16 T to reach 100 TeV |
| Timeline                                              | Construction at 2040s                                                               | Construction at 2050-60s                 |
| Cost                                                  | *                                                                                   | **                                       |



100-m Long Ba122 Tapes by Rolling Process

In 2020, J<sub>c</sub> of a 100-m 7-core tape using the new fabrication technique reached 500 A/mm<sup>2</sup> @ 4.2 K, 10 T.
 *Tape width 4.8 mm, tape thickness 0.3 mm.* I<sub>c</sub> > 260 A, J<sub>e</sub>>180 A/mm<sup>2</sup>.

Prof. Y. Ma's

Group, IEE-CAS

• In 2018,  $J_c$  of such tape is 300 A/mm<sup>2</sup> @ 4.2 K, 10 T.



#### Performance of HIP Ba122 Tapes with Cu/Ag Stabilizer





#### Minimum bending diameter measurement of the IBS tapes

10









### Fabrication of High Field IBS solenoids



Coil winding of the IBS double pancake solenoids with 20-mm inner diameter



IBS double pancake solenoids after heat reaction



Series IBS double pancake solenoids

Impregnated Series IBS solenoids



#### Performance test of the series IBS solenoids at 20 T background field



 $I_c$  of the series IBS solenoids reached 75 A at 20 T, and stable operation with 100 A



#### Performance test of the double pancake IBS solenoid at 30 T background field



I<sub>c</sub> of the IBS double pancake solenoid reached 67 A at 30 T. *New record!* 



#### Racetrack Coils with 100-m Long IBS Tapes

| Parameter               | Value   |
|-------------------------|---------|
| Background field        | 0-10 T  |
| Rate                    | 1 A/s   |
| Maximum pressure on IBS | 120 MPa |





Time (s)



#### Racetrack Coils with 100-m Long IBS Tapes

- Two racetrack coils have been made using the 100 m length IBS tapes.
- The coils reached 86.7% of critical current of the short sample at 4.2 K and 10 T.
- with highest compressive stress of 120 MPa.





#### Comments from SUST reviewers:

- a) ...the new results that can have a strong impact on the conductor and magnet community.
- b) ...demonstrated the great potential of Iron-Based Superconductor in the development of next-generation accelerators.



- The **engineering current density** of the long-length IBS still needs a significant improvement, to reach the similar level as ReBCO or Bi-2212 conductors.
- The **materials of stabilizer** should be shifted to copper or any other low-cost metals to realize the low cost of IBS.
- Structure and fabrication methods of IBS and corresponding coils should be further optimized to minimize the J<sub>c</sub> degradation at high field and high stress.
- And many other issues like detailed magnetic and mechanical properties study of IBS, quench detection and protection of the IBS coils / magnets and etc.

# **R&D Route for LTS High-field Accelerator Magnets**





# R&D of the 1<sup>st</sup> NbTi+Nb<sub>3</sub>Sn Model Dipole Magnet



Development of a NbTi+Nb<sub>3</sub>Sn twin-aperture model dipole magnet from 2017. Dipole field reached 12 T @ 4.2 K in May 2021 and 12.47 T after a thermal cycle.





### R&D of the 1<sup>st</sup> NbTi+Nb<sub>3</sub>Sn Model Dipole Magnet



# 5

0.8

0.6

04

02

0

-0.2

-0.4

-0.6

-0.8

### Development of the 16-T Hybrid Dipole Magnet

### 16 T Dipole: Nb<sub>3</sub>Sn 12~13 T + HTS 3~4 T



## Development of the 16-T Hybrid Dipole Magnet



### Development of a Roebel-like HTS Transposed Cable



### Development of the 16-T Hybrid Dipole Magnet



### Development of a Roebel-like HTS Transposed Cable



IBS prototype cable Cable length: 5 m Pitch length: 200 mm Cable thickness: 10.5 mm Reaction temp.: 860°C Test radius: 200 mm Current: >1300 A

### **R&D Roadmap for Next Years**





### Status of the HL-LHC MCBRD CCT Magnets



I AP1 [A]



Layout of the HL-LHC Magnets and Contributors

The 1<sup>st</sup> prototype magnet passed performance test at 4.2K in China, delivered to CERN in Aug 2020, and passed performance test at CERN in Dec 2020.









### Status of the HL-LHC MCBRD CCT Magnets

The 1<sup>st</sup> series magnet passed performance test at 4.2K in China and delivered to Europe in Oct 2021. The remaining 11 sets of magnets will be delivered to Europe at a rate of 2~3 months per magnet





200A ramp up

300A ramp down 200A ramp down

- 100A ramp down





### Summary



- Strong domestic collaboration in China for the advanced superconductor R&D (HTS & Nb<sub>3</sub>Sn): to significantly raise their performance and lower their cost.
- J<sub>c</sub> of 100-m long 7-core Iron-Based Superconducting tape has reached 500 A/mm<sup>2</sup> @ 4.2 K, 10 T, corresponding to I<sub>c</sub> >200 A, J<sub>e</sub>>140 A/mm<sup>2</sup>.
- Quench current of the Iron-Based Superconducting double pancake solenoid coil reached 67 A at 30 T, new world record!
- 10+ T twin-aperture model dipoles being developed at IHEP, reached 12.47 T at 4.2 K in July 2021, aiming to reach 16 T (Nb<sub>3</sub>Sn+HTS) in 3 years, and 20 T in 10 years.

**International collaboration** on high field magnet technology for next-generation particle accelerators are highly welcome!

