Gravitational Wave Detection **between NANOGRAV and LISA**

Surjeet Rajendran **The Johns Hopkins University**

The Gravitational Wave Spectrum

Local Test Mass based GW Detection 101

Satellites with drag-free test masses (TM)

Light travel time (= proper distance) between test masses is modulated by GW

Emitter (A) sends pulse at $t_A = t_0$; receiver (B) gets pulse at $t_B = t_0 + \Delta t$:

$$\Delta t = L_0 \left(1 - \frac{h_0}{2} \operatorname{sinc}(\omega_{gw} L_0/2) \operatorname{cos}[\omega_{gw}(t_0 + L_0/2)] \right) + \mathcal{O}(h_0^2)$$

$$\longrightarrow L_0 \left(1 - \frac{h_0}{2} \operatorname{cos}[\omega_{gw} t_0] \right) + \mathcal{O}(h_0^2) \qquad [\omega_{gw} L_0/2]$$

 $, L_0 \ll 1$]

Local Test Mass based GW Detection 101

Satellites with drag-free test masses (TM)

Light travel time (= proper distance) between test masses is modulated by GW

Emitter (A) sends pulse at $t_A = t_0$; receiver (B) gets pulse at $t_B = t_0 + \Delta t$:

$$\Delta t = L_0 \left(1 - \frac{h_0}{2} \operatorname{sinc}(\omega_{gw} L_0/2) \operatorname{cos}[\omega_{gw}(t_0 + L_0/2)] \right) + \mathcal{O}(h_0^2)$$

$$\longrightarrow L_0 \left(1 - \frac{h_0}{2} \operatorname{cos}[\omega_{gw} t_0] \right) + \mathcal{O}(h_0^2) \qquad [\omega_{gw} L_0/2]$$

 $\vdash \mathcal{O}(h_0^2)$

 $_{v}L_{0} \ll 1$]

How drag free?

LISA Pathfinder Results

LISA Pathfinder. Phys. Rev. Lett. 120, 061101 (2018)

LISA Pathfinder

- Residual gas
- Charging
- TM actuator noise
- Laser intensity noise
- etc.

[Phys. Rev. Lett. 120, 061101 (2018)]

Suppress acceleration noise by having very large test mass

$$a = \frac{F}{M}$$

How do we launch?

Planets?

Stable Center of Mass Unstable Surface: Seismics/ atmospheric effects

Natural Objects?

Suppress acceleration noise by having very large test mass

$$a = \frac{F}{M}$$

How do we launch?

Planets?

Stable Center of Mass Unstable Surface: Seismics/ atmospheric effects

Natural Objects?

Suppress acceleration noise by having very large test mass

 $a = \frac{F}{M}$

How do we launch?

Asteroids?

Few km scale rocks

Radio/Laser Range

Deployed base station

Deployed base station

Deployed base station

 $h \sim 10^{-17} - 10^{-18}, L \sim 1 \text{ AU} \implies \delta x \sim hL \sim 0.1 \,\mu\text{m}$

Radio/Laser Range

Stability?

Deployed base station

$h \sim 10^{-17} - 10^{-18}, L \sim 1 \text{ AU} \implies \delta x \sim hL \sim 0.1 \,\mu\text{m}$

Radio/Laser Range

Stability?

Land on Asteroids? Do we have good enough atomic clocks?

Is the asteroid surface/center of mass stable enough?

Noise sources

- Gravitational pull of large bodies (planets, moons) ephemeris and $G_N M_{\rm obj}$ known
- Solar intensity fluctuations (CoM + torques)
- Solar wind fluctuations (CoM + torques)
- Thermal cycling
- Noise at rotational period
- Gravity Gradient Noise from other $\sim 10^6$ asteroids in Main Belt
- Seismics
- Charging
- Magnetic forces and torques
- Collisions
- Tidal deformation
- etc...
- Clock noise
- Link (shot/thermal) noise

M.A.Fedderke., P. W. Graham, and S. Rajendran. Phys. Rev. D 103, 103017 (2021) [2011.13833].

Noise sources

- Gravitational pull of large bodies (planets, moons) ephemeris and $G_N M_{\rm obi}$ known
- Solar intensity fluctuations (CoM + torques)
- Solar wind fluctuations (CoM + torques)
- Thermal cycling ullet
- Noise at rotational period
- Gravity Gradient Noise from other $\sim 10^6$ asteroids in Main Belt
- Seismics
- Charging
- Magnetic forces and torques
- Collisions
- Tidal deformation
- etc...
- Clock noise
- Link (shot/thermal) noise

Dominant Noise Sources

M.A.Fedderke., P. W. Graham, and S. Rajendran. Phys. Rev. D 103, 103017 (2021) [2011.13833].

Noise sources

- Gravitational pull of large bodies (planets, moons) ephemeris and $G_N M_{\rm obi}$ known
- Solar intensity fluctuations (CoM + torques)
- Solar wind fluctuations (CoM + torques)
- Thermal cycling •
- Noise at rotational period
- Gravity Gradient Noise from other $\sim 10^6$ asteroids in Main Belt
- Seismics
- Charging
- Magnetic forces and torques
- Collisions
- Tidal deformation
- etc...
- Clock noise
- Link (shot/thermal) noise \bullet

Dominant Noise Sources

M.A.Fedderke., P. W. Graham, and S. Rajendran. Phys. Rev. D 103, 103017 (2021) [2011.13833].

Link Noise Sources

ASTEROIDS ARE EXCELLENT **TEST MASSES** IN THE μHz BAND!

Projections

Asteroids are excellent test masses for a GW detector in the μ Hz band

~ m scale laser/radio ranging between on-asteroid base stations equipped with transmit/receive capability and atomic clocks gets excellent sensitivity

Strongly motivates:

- a detailed technical design study
- in-situ seismic / plastic deformation monitoring of asteroids in upcoming missions
- space-qualifying cold-atom atomic clocks

Astrometry (10 nHz - 1 µHz)

Gravity Gradient Noise below µHz

- The Sun, Planets (and Pluto), Moons
 - Relatively few
 - Masses (or $G_N M$) and locations known
 - Not noise (model out)
- The Inner Solar System asteroids
 - $\mathcal{O}(10^6)$ objects
 - Generally, masses poorly / indirectly determined
 - Locations are known to some extent
 - NOT reasonable to assume that one can successfully model these out
 - Asteroid gravity gradient noise (GGN)!

- Use NASA JPL Small-Body Database
- 10-year mission simulation
- Detectors on circular orbit @ 1AU; asteroids on elliptical orbits (not N-body)

- Removing ~50 heavy distant objects does not change this conclusion
- At higher frequency, noise drops off. But only $\sim 1/6$ of objects in database used in simulation: missing diameters for smaller, closer passing objects...

- Use NASA JPL Small-Body Database
- 10-year mission simulation
- Detectors on circular orbit @ 1AU; asteroids on elliptical orbits (not N-body)

- Removing ~50 heavy distant objects does not change this conclusion
- At higher frequency, noise drops off. But only $\sim 1/6$ of objects in database used in simulation: missing diameters for smaller, closer passing objects...

- Use NASA JPL Small-Body Database
- 10-year mission simulation
- Detectors on circular orbit @ 1AU; asteroids on elliptical orbits (not N-body)

- Problematic for ANY local-test mass-based GW detector with Inner Solar System baselines, up to frequencies ~ (few) $\times 10^{-7}$ Hz
- Removing ~50 heavy distant objects does not change this conclusion
- At higher frequency, noise drops off. But only $\sim 1/6$ of objects in database used in simulation: missing diameters for smaller, closer passing objects...

- Use NASA JPL Small-Body Database
- 10-year mission simulation
- Detectors on circular orbit @ 1AU; asteroids on elliptical orbits (not N-body)

- Problematic for ANY local-test mass-based GW detector with Inner Solar System baselines, up to frequencies ~ (few) $\times 10^{-7}$ Hz
- Removing ~50 heavy distant objects does not change this conclusion
- At higher frequency, noise drops off. But only $\sim 1/6$ of objects in database used in simulation: missing diameters for smaller, closer passing objects...

 $\delta x \sim hL =$

Drastic Signal Boost - without increasing local noise PTAs limited by shot noise

Frequency / Hz

$$\Rightarrow \delta x \sim h \lambda_{GW}$$

Pulsar Timing Arrays: Detect gravitational waves by looking for modulation in the arrival times of pulsar signals

Works because pulsars are known to be stable clocks

Pulsar Timing Arrays: Detect gravitational waves by looking for modulation in the arrival times of pulsar signals

Works because pulsars are known to be stable clocks

What are other stable aspects of distant astrophysical objects?

Center of mass positions of stars?

Pulsar Timing Arrays: Detect gravitational waves by looking for modulation in the arrival times of pulsar signals

Works because pulsars are known to be stable clocks

What are other stable aspects of distant astrophysical objects?

Pulsar Timing Arrays: Detect gravitational waves by looking for modulation in the arrival times of pulsar signals

Works because pulsars are known to be stable clocks

What are other stable aspects of distant astrophysical objects?

Center of mass positions of stars?

Measure center of mass position via angle measurement?

Gravitational wave bends the path taken by light near the detector

Gravitational wave bends the path taken by light near the detector

 $\theta \to \theta + \delta \theta \cong \theta + h$

Detector

Gravitational wave bends the path taken by light near the detector

 $\theta \to \theta + \delta \theta \cong \theta + h$

For interesting sources, need to measure h ~ 10⁻¹⁵ - 10⁻¹⁶

Detector

Gravitational wave bends the path taken by light near the detector

 $\theta \to \theta + \delta \theta \cong \theta + h$

For interesting sources, need to measure h ~ 10⁻¹⁵ - 10⁻¹⁶ How stable? How do we measure?

Stability

Measuring position via light from object I.e. photometric center instead of center of mass

> Motion of star spot leads to wobble of photometric center

Stability

Measuring position via light from object I.e. photometric center instead of center of mass

> Motion of star spot leads to wobble of photometric center

$$\delta\theta \sim \left(\frac{r}{R}\right)^2 \frac{R}{L}$$

r: spot size R: stellar radius

L: distance to star

Smaller R => Larger spot size Longer L => Larger spot size

White Dwarfs?

$\delta\theta \sim \left(\frac{r}{R}\right)^2 \frac{R}{L}$

 $\delta heta \sim$

White Dwarfs?

Known non-magnetic white dwarfs with intensity stability better than 0.01 percent (Kepler/K2) (Landolt Standards)

Stability

$$\left(\frac{r}{R}\right)^2 \frac{R}{L}$$

 $\delta heta \sim$

White Dwarfs?

Stability

$$\left(\frac{r}{R}\right)^2 \frac{R}{L}$$

Known non-magnetic white dwarfs with intensity stability better than 0.01 percent (Kepler/K2) (Landolt Standards)

For h ~ 10⁻¹⁶ @ 0.01 percent instability, L ~ kpc

 $\delta heta \sim$

White Dwarfs?

Stability

$$\left(\frac{r}{R}\right)^2 \frac{R}{L}$$

Known non-magnetic white dwarfs with intensity stability better than 0.01 percent (Kepler/K2) (Landolt Standards)

For h ~ 10⁻¹⁶ @ 0.01 percent instability, L ~ kpc

Planets?

> 10 nHz, Red Giant phase vaporizes minor bodies

 $\delta heta\sim$

White Dwarfs?

Stability

$$\left(\frac{r}{R}\right)^2 \frac{R}{L}$$

Known non-magnetic white dwarfs with intensity stability better than 0.01 percent (Kepler/K2) (Landolt Standards)

For h ~ 10⁻¹⁶ @ 0.01 percent instability, L ~ kpc

Planets?

- > 10 nHz, Red Giant phase vaporizes minor bodies
 - **Astrometry of white dwarfs?**

Stellar Imager

 $\lambda \sim 120 \text{ nm}, d \sim 1 \text{ km} \implies h \sim 10^{-16}$

(For white dwarf @ kpc)

Observe small number of stars for long periods

Stellar Imager

Better measurements of intensity fluctuations could make numbers better

 $\lambda \sim 120 \text{ nm}, d \sim 1 \text{ km} \implies h \sim 10^{-16}$

(For white dwarf @ kpc)

Observe small number of stars for long periods

Stellar Imager

Better measurements of intensity fluctuations could make numbers better

Adds to Science Case of such missions!

 $\lambda \sim 120 \text{ nm}, d \sim 1 \text{ km} \implies h \sim 10^{-16}$

(For white dwarf @ kpc)

Observe small number of stars for long periods

Conclusions

The Gravitational Wave Spectrum

Gravitational wave astronomy is here to stay!

Strong science case to probe entire gravitational wave spectrum

Strong case for using asteroids as test masses in the µHz frequency range. Motivates asteroid seismology measurements and development of space-qualified atomic clocks

Gravity gradient noise from asteroids below µHz motivates astrometry of photometrically stable non-magnetic white dwarfs. Adds to the science case of interferometry missions like Stellar Imager