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® O3 Search: arxiv:astro-ph.C0/2105.13085, LVK Collaboration Paper
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A new era of Gravitational Wave Astronomy

Also important for particle physics! X



New Physics

é

® High energy frontier (LHC, etc)

@® Precision frontier (EDM, MDM, etc)

® Cosmic frontier (CMB, dark matter searches, etc)

® Gravitational waves

(cosmic phase transitions,
cosmic topological defects,
dark photons, etc)
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ultralight particles WIMP primordial black holes
(axion, dark photon) boson stars, BEC
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field dark matter particle dark matter exotic compact object

® Large numer density (local DM enery density 0.4GeV/ )

® Behaving like an oscillating classical field



Gauge boson of a new U(1) symmetry

\ ® Mass(e.g., Higgs mechanism)
@® Relic abundance (e.g., misalignment mechanism)
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a dark photon wave
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a population
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Benefits:

® Significantly reduce noise

® Larger SNR for longer observation time Overlap reduction: ~(f) = Ailf;[g
(ALT .::'

Signal is similar to stochastic GWs o
Livingston - Hanford

N y ~-0.9
dark photon field value very good coincidence
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® Signal 1s approximately a peak in frequency space

® Data analyzed using short-time Fourier transforms (SFTs)

= /  , where = 1800

complex SFT coefficient for SFT and
frequency bin and interferometer 1, 2

® Signal: o 1 EN“‘TSR{
NSFT

Plt P2 429

the noise power

The signal is correlated!

® Noise:

1 1
2 _ background might not be ideally Gaussian
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Background is estimated using frequency offset (lags) when calculating cross-correlation statistics.

|deally, the SNR from the background should follow a Gaussian distribution with mean=0 and variance = 1.

1 pair of SFTs with offset of amount “lag”
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\ data |used /

10 lag choices: (-50, -40, -30, -20, -10, 10, 20, 30, 40, 50)
(bin size = 1/1800 Hz = 0.556 mHz)

Also veto the marked lines and combs provided by the CW group.
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Distribution of the Real Part of SNR (fine binning)
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A total of 21 are found with SNR larger than 5, but no interesting candidates for DPDM.

® 11 are due to loud artifacts from one detector (inspecting the single detector PSD)

@® 6 have elevated noise (with real or imaginary SNR exceeding 4 in magnitude for background)

For 1800s SFT, 0.2 Hz control band, real and imaginary SNR, there are a total of 7200 measurements.
Expect less than 1 event with real or imaginary SNR greater than 3.8.
Existence of backgrounds with real or imaginary SNR greater than 3.8 suggests non-Gaussian artifacts.

® 4 remaining are consistent with Gaussian expectation

frequency (Hz) SNR SNR/(Bkg)
483.872 0.5345.03¢ |Re: [-3.62, 3.62] Im: [-3.52, 3.51
853.389  |-0.18+5.02i | Re: [-3.85, 3.85] Im: [-3.55, 3.90
1139.590  |-5.214+0.67 |Re: [-3.54, 3.39] Im: [-3.61, 3.58
1686.998 5.01+1.637 |Re: [-3.50, 3.70] Im: [-3.65, 3.89 19




® BSD (banded sampled data) excess power method New in O3

Optimized Fourier Transform coherence time

Signal power 1s confined to one frequency bin

® Time/frequency map in 10-Hz bands over all of O3

Projected to frequency axis

® Candidates selection

On average one coincident candidate per 1Hz band in Gaussian noise. Y — [

® Coincidence check o

Vetoed if CR<5 and if they are farther than 1 frequency bin from each other. -



Outliers (all vetoed, none exists for triple coincidence)
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frequency (Hz) |average CR|TrrT (8) source
15.9000 5.29 44762 HL unknown line in L
17.8000 28.93 44762 LV unidentified line in L (17.8 Hz)
36.2000 8.90 22382 HV unidentified line in H (36.2 Hz)
599.324 12.38 1492 HV |peakmap artifact; no significant candidate ipf L
099.325 12.33 1492 HV |peakmap artifact; no significant candidate jh L
1478.75 6.47 604 HL noisy spectra in H
1496.26 7.12 296 HL noisy violin resonance regions
1498.77 8.73 596 HL noisy violin resonance regions
1799.63 7.40 498 HV unidentified line in H (1799.63904 Hz)
1936.88 7.96 462 HL noisy violin resonance regions
1982.91 6.34 450 HL noisy violin resonance regions

example
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(Nature) Commun.Phys. 2 (2019) 155, H.G, Riles, Yang, Zhao

New in O3 search:

arxiv:astro-ph.C0/2105.13085, LVK Collaboration Paper

1. Another search performed by the continuous wave group with a different method

2. An improvement factor included from finite light travel time (PRD.103.L051702, Morisaki, et al)
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® GW experiments can be extended to search for dark matter

GW detector as a dark matter direct detection experiment

® O1 data has already beaten existing experimental constraints

® O3 data gives much better result

Possibly achieve 5-sigma discovery at unexplored parameter regimes
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