Multi-Messenger searches for New Physics

Daniele Gaggero

The neverending quest for new (astro)physics based on multi-wavelength and multi-messenger astronomy

- A plethora of messengers from highly energetic events
 - Charged CRs
 - High-energy *photons* from keV to PeV domain -
 - Gravitatational waves
- All these messenger originate from events characterized by a very high release of energy
 - Reveal aspects of *particle acceleration and transport* in turbulent environments, (astro)physics of *compact objects...*
- *Portals to new physics?* In particular, can shed light on the Dark Matter problem

The Dark Matter problem: Candidates

Charged CRs and the WIMP quest

- Focus on Antiparticles. Relevant channels: antiprotons, positrons.

Charged CRs and the WIMP quest

- Several anomalies were discussed in both channels.

Anomalies with respect to what?

- Orthodox picture: Bulk of CRs accelerated by SNRs. Antiparticles mostly secondary. Transport parametrized by (scalar) diffusion equation.
- Anomalies may be hints of "new astrophysics", mismodeling of background... we have to be very careful!

Focus on antiprotons: A DM hint? Role of uncertainties?

Gamma rays: GeV domain. Targets

Gamma rays: GeV domain. Claims and bounds. State of the art (pre-CTA)

Gamma rays: GeV domain. Claims and bounds: The GC excess

- An extended, spherical signal from the inner Galaxy
- Outlined by a *template fitting* technique
- **DM interpretation**: $M_{DM} \sim 30$ GeV; σ_{ann} close to thermal cross section
- Very rich literature!

D. Dixon et al. 1998 [arXiv:9803237]; V. Vitale et al. 2009 [arXiv:0912.3828]; L Goodenough and D. Hooper, 2009; D. Hooper and L. Goodenough, 2010 D. Hooper and T. Linden, 2011; K. N. Abazajian and M. Kaplinghat, 2012 D. Hooper and T. R. Slatyer, 2013; C. Gordon and O. Macias, 2013 T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden; S. Portillo, N. L. Rodd and T. R. Slatyer, 2014 [arXiv:1402.6703]; F. Calore, I. Cholis, C. Weniger, 2014 [arXiv:1409.0042]; F. Calore et al. 2015 [arXiv;1411.4647]

Gamma rays: GeV domain. Claims and bounds: The GC excess

- Is it really an excess (normalization issues)?
- D. Gaggero et al. 2015 [1507.06129] E. Carlson et al. 2015 [1510.04698]
- Is it really spherically symmetric (morphology issues)?
- R. Bartels et al. 2017 [1711.04778]
- O. Macias et al. 2017 [1611.06644]

• DM interpretation

tension with constraints from dwarf spheroidal galaxies? connection with other channels?

MSP interpretation

suggested by wavelet analyses and photon statistics

R. Bartels et al. 2016 [1506.05104]S. Lee et al. 2016 [1506.05124]F. Calore et al. 2021 [2102.12497]

Gamma rays and WIMPs: future prospects (LSST+LAT,

CTA)

The Primordial Black Hole quest...

...and the low-energy part of the e.m. spectrum

Low-energy gamma rays and Black Holes: Evaporation

An open window!

- Several constraints (1204.2056, 1505.04444, 1301.4984) recently challenged (1807.11495, 1906.05950)
- Can be probed by studying low-energy (MeV) gamma-ray data.
- PBHs can produce Hawking Radiation

$$\Phi_M = \frac{\mathrm{d}N}{\mathrm{d}E\,\mathrm{d}t} = f \frac{c\,\rho}{4\pi\,M} \int \mathrm{d}z \frac{e^{-\tau(z)}}{H(z)} \,\Psi_M[(1+z)E]$$

$$\Psi_M[E] = (2\pi\hbar)^{-1}\Gamma_s / (\exp(E/k_B T) - 1)$$

Low-energy gamma rays and Black Holes: Evaporation

Low-energy gamma rays and Black Holes: Accretion

- A new window of detection: Multi-wavelength (Radio + X-ray) emission from gas accreted onto isolated BHs in the Milky Way
- Potential of discovery for a sub-dominant population with future radio observatories (SKA)
- The Galactic Center, once again, is an ideal target

Simulated sources associated to PBHs

Low-energy gamma rays and Black Holes: Accretion

- Robust upper limit on the PBH abundance.
 - Touching some "Astrophysical Floor"?
 - Threshold effect at low energy?
 - Weaker for multi-modal mass functions?

- DG et al., arXiv:1612.00457 (PRL)
- J. Manshanden, **DG** *et al.*, 1812.0796 (**JCAP**)
- F. Scarcella, DG et al., arXiv:2012.10421 (MNRAS)

Dark Matter and Gravitational Waves

PBHs or ABHs? BHs as portals to DM?

Two fundamental questions:

- 1) Can PBHs be part (or all) of the Dark matter that permeates the Universe? Can we study the GW merger events to study this question?
- 2) Can GW events be used to understand the **nature** of the **DM** (whatever the candidate)?

PBHs or ABHs? Population studies

- 1) Can **PBHs** be part (or all) of the **Dark matter** that permeates the Universe? Can we study the GW **merger events** to study this question?
- --> Redshift dependence may be the key! Interesting science case for future ground-based observatories (Einstein Telescope, Cosmic Explorer)

BHs as portals to a potential DM discovery: Study of anomalous waveforms

2) Can GW events be used to Gravitational Winderstand the **nature** of the

DM (whatever the candidate)?

-> Study of **Dephased Dark Matter 'de-phasing' revisited waveforms** in "Dressed" **IMRIs** (*Intermediate-Mass Inspiral* [**BJK**, Nichols, Gaggero, Bertone, 2002.12811] *Events*)

Dark Matter Mini-Spikes

We expect **over-densities of DM** with power-law density profile around black holes formed in the early Universe $Q_{DM}(r) = q_{DM}(r)$

$$\rho_{\rm DM}(r) = \rho_{\rm sp} \left(\frac{r_{\rm sp}}{r}\right)^{\gamma_{\rm sp}}$$

- Around PBHs from early in the radiation era to <u>z</u> ~-30 [Mack<u>+333</u> 0608642, ErôShenko 1607.00612, Adamek+ 1901.08528]
- Around hypothetical IMBHs and SMBHs [Gondolo&Silk 9906391, Zhao&Silk 0501625, Hannuksela+ 1906.11845] $ho_{
 m sp}=200\,M_\odot\,{
 m pc}^{-3}$

_				
	Parameter	Asprophysica	Pripordial	
	$m_1 \; [{ m M}_\odot]$	10^{3}	10^{3}	
	$m_2 [{ m M}_\odot]$	1.4	1.4	
	$\rho_6 \; [10^{15} {\rm M_\odot/pc^3}]$	5.448	5^{345}	$10^{24}M_{\odot}{ m pc}^{-3}$
	$ ho_{ m sp} \; [{ m M}_{\odot}/{ m pc}^3]$	226	1.798×10^4	
	$\gamma_{ m sp}$	$7/3 = 2.\overline{3}$	9/4 = 2.25	
	$D_L [{ m Mpc}]$	76	76	
r	$n_{\rm DM}(<10^{-6}{\rm pc})~[{ m M}_\odot]$] 0.102	0.090	
_				

 $\rho_{\rm DM}(r) = \rho_{\rm sp} \left(\frac{r_{\rm sp}}{r}\right)^{\gamma_{\rm sp}}$ $M_{IMBH} = 1000 M_{Sun}$ DM IMB $\gamma_{\rm sp} = 7/3 \approx 2.33$ $\rho_{\rm sp} = 200 \, M_\odot \, \mathrm{pc}^{-3}$ $r_{\rm sp} = 0.5\,{\rm pc}$

1024 M/ -3

HKUST 14/01/2022

22

Intermediate Mass Ratio Inspirals

 $M_{\rm IMBH} = 1000 \, M_{\odot}$

- The IMRI evolves due to:
 - gravitational pull

IMBH/

NS/

• dynamical friction from the DM

- back-reaction from its gravitational wave (GW) radiation
- Resulting inspiral gravitational wave is modified and shows a dephasing
 - Eda et al. 1301.5971
 - Eda et al. 1408.3534

$$M_{test} \ddot{\mathbf{r}} = \mathbf{F}_{grav}(r, v) + \mathbf{F}_{dyn}(r, v) + \mathbf{F}_{rad}(r, v)$$

$$\mathbf{F}_{grav}(r,v) = -M_{test} \frac{G(M_{IMBH} + M_{halo,enclosed})}{r^3} \mathbf{r}$$
$$\mathbf{F}_{dyn}(r,v) = -M_{test} \frac{4\pi \ln(\Lambda) G^2 M_{test} \rho(r)}{v^3} \mathbf{v},$$

$$\mathbf{F}_{rad}(r,v) = -\frac{32}{5} M_{test} \frac{G^3 M_{tot}^3 \nu}{c^5 r^4} \left(1 + \gamma \left(-\frac{743}{336} - \frac{11}{4} \nu \right) \right) \mathbf{v}$$

23

- Realistic assessments (taking into account the *feedback on the DM spike*):
 - Anticipated merger and dephased signal can be **detectable**.
 - "DM spike" parameters measurable!

A Science Case for LISA!

Dark Matter 'spike'

- B. Kavanagh, D. Nichols, G. Bertone, DG, arXiv:2002.12811 (PRD)
- A. Coogan, G. Bertone, DG, B.J. Kavanagh, D. Nichols, arXiv:2108.04154, submitted to PRD

- Realistic assessments (taking into account the *feedback on the DM spike*):
 - Anticipated merger and dephased signal can be **detectable**.
 - "DM spike" parameters measurable!

A Science Case for LISA!

- B. Kavanagh, D. Nichols, G. Bertone, DG, arXiv:2002.12811 (PRD)
- A. Coogan, G. Bertone, DG, B.J. Kavanagh, D. Nichols, arXiv:2108.04154, submitted to PRD

- Realistic assessments (taking into account the *feedback on the DM spike*):
 - Anticipated merger and dephased signal can be **detectable**.
 - "DM spike" parameters measurable!

A Science Case for LISA!

Dark Matter 'spike'

- B. Kavanagh, D. Nichols, G. Bertone, DG, arXiv:2002.12811 (PRD)
- A. Coogan, G. Bertone, DG, B.J. Kavanagh, D. Nichols, arXiv:2108.04154, submitted to PRD

Conclusions

- The field of **Indirect Dark Matter Detection** became broader and more complex over the years. Many **DM candidates** under scrutiny.
- Many claims were discussed and challenged, espacially in the antiparticle and gamma-ray channel. No claim was firmly confirmed
- Waiting for new amazing data on both ends of the gamma-ray spectrum: from sub-GeV to multi-TeV
- Gravitational Wave window is extremely promising. Contribution of Primordial Black Holes to the Dark Matter? Exploting Black Holes as portals to a Dark Matter discovery?

Thank you for your attention!

28

Daniele Gaggero

INSTITUT DE FÍSICA C O R P U S C U L A R