Super Heavy (Thermal) Dark Matter

Eric Kuflik

IAS HEP2022

Kim, **EK** PRL 2019

Kramer, **EK**, Levi, Outmezguine, Ruderman, PRL 2020

Asadi, Kramer, **EK**, Ridgway, Slatyer, Smirnov, PRL, PRD 2021

Work in progress with Yann Gouttenoire and Di Liu 2022

Work in progress with Ronny Frumkin and Itay Lavie 2022

 \mathbf{Why} ?

Past 40 years

WIMP, glorious WIMP*

*Also axions

$$\langle \sigma_{\rm ann} v \rangle = \frac{\alpha^2}{m_{\rm DM}^2}$$

Correct relic abundance for

$$m_{\rm DM} = \alpha \times 30 \text{ TeV}$$

For Weak coupling, Weak scale emerges

Weakly Interacting Massive Particle (WIMP)

Thermal Relic:
Simple and Predictive

time

Amount

not sensitive to physics before this point

Freezeout:

$$n_{\rm DM} \langle \sigma_{\rm ann} v \rangle = H$$

$$n_{\rm DM} = \frac{H}{\langle \sigma_{\rm ann} v \rangle}$$

Guiding principle in cosmology

H, He4, D, T, Li abundances from **BBN**

CMB decoupling, free electron fraction from **Recombination**

Searching for WIMPs

Direct Production

e.g. LHC

Direct Detection

e.g. LUX

Indirect Detection

e.g. FERMI

Experiments are getting increasingly sensitive...
but we still haven't found it

Status in 2022

Dominant paradigm being challenged.

Great opportunity for new ideas!

Beyond the WIMP

Unitarity Bound

Amount of DM

time

Correct relic abundance for

$$m_{\rm DM} \simeq \alpha \times (T_{\rm eq} M_{\rm pl})^{1/2} \simeq \alpha \times 30 {\rm TeV}$$

For perturbative couplings

$$\alpha < 4\pi$$

Unitarity Bound

Amount of DM

time

- Larger cross section
 → DM annihilates away more
- 2. Fewer dark matter particles
 → must be heavier to give
 observed energy density
- 3. Annihilations are never efficient enough to predict very heavier DM

Compare Processes

$$\Gamma_{\rm ann} = n_{\rm DM} \left\langle \sigma_{\rm ann} v \right\rangle \propto e^{-m_{\rm DM}/T}$$

Boltzmann suppressed

Less efficient

Compare Processes

vs.

$$\Gamma_{\rm ann} = n_{\rm DM} \left\langle \sigma_{\rm ann} v \right\rangle \propto e^{-m_{\rm DM}/T}$$

Boltzmann suppressed

Less efficient

$$\Gamma_{\text{ann}} = n_{\text{light}} \left\langle \sigma_{\text{ann}} v \right\rangle$$

$$Less \text{ (or not)}$$

$$Boltzmann \text{ suppressed}$$

Much more efficient!

Example #1: Zombies

[Kramer, **EK**, Levi, Outmezguine, Ruderman, PRL 2020]

Zombies

Zombies

- 1. Dark matter finds a zombie, gets turned into zombie.
- 2. Some dark matter survives the pandemic until today
- 3. Zombies eventually decay away

Zombies

Not forbidden (as $T \to 0$), to get heavy DM Dark matter should be (meta)stable

Zombie Simulation

Zombie Simulation

Zombie Simulation

Basic Ingredients

Zombie process

Equilibrium process

 χ : dark matter

 ζ : zombie

$$\begin{array}{c|c}
 & U(1)_{e-\mu} \\
\chi & 3 \\
\zeta & 1 \\
S & -2
\end{array}$$

$$\mathcal{L}_{\rm yuk} = y_\zeta S \bar{\zeta}^c \zeta + y_\chi S \bar{\zeta} \chi + y_e H \bar{\zeta} L_e + y_\mu H \bar{\zeta}^c L_\mu + {\rm h.c.}$$

Phase Diagram

Metastable DM

Zombies too abundant

 \rightarrow zombies must decay

Metastable DM

Zombies too abundant

→ zombies must decay

Metastable DM with strong indirect detection signal

Example #2: Chain Dark Matter

Chain Dark Matter

DM candidate

Very efficient because the SM particles are abundant

Chain Dark Matter

Last particles decays in equilibrium: system is in chemical equilibrium

Need a chain

Otherwise DM is too unstable

Metastable DM

Numerics

Consider 2-chain first

$$\langle \sigma v \rangle = \frac{1}{m_{\chi}^2} \rightarrow m_{\chi} = 6 \times 10^{14} \text{ GeV}$$

Very heavy dark matter

Drunk DM

Numerics

For the N-chain

$$-mT\frac{\partial N_1'}{\partial T} = -\langle \sigma v \rangle n_{\rm sm}(N_1 - N_2)$$

$$-mT\frac{\partial N_j'}{\partial T} = \langle \sigma v \rangle n_{\rm sm}(N_{j-1} - N_j) - \langle \sigma v \rangle n_{\rm sm}(N_j - N_{j+1})$$

$$-mT\frac{\partial N_N'}{\partial T} = \langle \sigma v \rangle n_{\rm sm}(N_{N-1} - N_N) - \Gamma_{\chi_N}(N_N - N_N^{\rm eq})$$

Turn it into a diffusion equation

$$(\partial_{\tau} - D\partial_{\ell}^{2})N_{\ell}(\tau) = 0$$

$$\ell = \pi j/[2(N-1)] \qquad \tau = -T/m$$

Diffusion coefficient:

$$D = \pi^2 \lambda / [4(N-1)^2]$$

Boundary conditions

$$\partial_{\ell} N|_{\ell=0} = 0, \qquad N_{\pi/2}(\tau) = N^{\text{eq}}(\tau)$$

Chain DM

Beyond Thermal Unitarity

Both cases: nearly degenerate dark sector states and metastable dark matter.

Look for cosmic rays up to the Planck scale!

This is generic for going beyond thermal unitarity

Will prove this with students Ronny Frumkin and Itay Lavie

Example #3: Squeezeout

Squeeze-out

Simple theory:

$$SU(3), N_F = 1$$
 $m_Q \gg T_C \simeq \Lambda_{\text{confinement}}$

$$\mathcal{Z} \supset -\frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{Q} \left(i \gamma_{\mu} D^{\mu} - m_{Q} \right) Q ,$$

Asymptotically free with first order phase transition

Bounds states:

Mesons $Q\bar{Q}$ Baryons QQQ, $\bar{Q}\bar{Q}\bar{Q}$ stable, DM?

Quark Freezeout

Amount of DM

Phase Transition

Not the end of the story

How do these pair up into mesons and baryons? (only baryons will be DM)

What does the phase transition do?

Too far apart to 'recombine' into hadrons

Too far apart to 'recombine' into hadrons

 $T \sim T_c$

 $T \sim T_c$

Bubble nucleation

Nucleation rate:

$$\Gamma \simeq T^4 e^{-\frac{F}{T_c}}$$

Minimal bubble size

$$R_c = \frac{2\sigma T_c}{l(T_c - T)}$$

Free energy at critical size

$$F_c = \frac{16\pi}{3} \left(\frac{\sigma}{T_c^3}\right)^3 \left(\frac{l}{T_c^4}\right)^{-2} \frac{T_c^3}{(T_c - T)^2}$$

Bubble nucleation

Nucleation rate:

$$\Gamma \simeq T^4 e^{-\frac{F}{T_c}}$$

Minimal bubble size

$$R_c = \frac{2\sigma T_c}{l(T_c - T)}$$

Free energy at critical size

$$F_c = \frac{16\pi}{3} \left(\frac{\sigma}{T_c^3}\right)^3 \left(\frac{l}{T_c^4}\right)^{-2} \frac{T_c^3}{(T_c - T)^2}$$

 $\prod R_1$

Coalescing

Rate to coalesce fast for

$$R_1 \simeq M_{\rm pl}^{2/3} / T_c^{5/2}$$

Witten 84

2 bubbles radius $R \rightarrow$ bubble radius $2^{2/3}R$

Force and time needed to rearrange

$$\rho \frac{4}{3} \pi^3 R^3 \frac{R}{t^2} \sim Ma = F \sim \frac{\Delta E}{R} \sim 4\pi R^2 \frac{\sigma}{R}$$

Time is faster than Hubble $(t < H^{-1})$

$$R_1 \lesssim \left(\frac{\sigma}{\rho H^2}\right)^{1/3} \sim M_{\rm pl}^{2/3} / T_c^{5/2}$$

 $\prod R_1$

Coalescing

Rate to coalesce fast for

$$R_1 \simeq M_{\rm pl}^{2/3} / T_c^{5/2}$$

Witten 84

2 bubbles radius $R \rightarrow$ bubble radius $2^{2/3}R$

Force and time needed to rearrange

$$\rho \frac{4}{3} \pi^3 R^3 \frac{R}{t^2} \sim Ma = F \sim \frac{\Delta E}{R} \sim 4\pi R^2 \frac{\sigma}{R}$$

Time is faster than Hubble $(t < H^{-1})$

$$R_1 \lesssim \left(\frac{\sigma}{\rho H^2}\right)^{1/3} \sim M_{\rm pl}^{2/3} / T_c^{5/2}$$

R₁ Pessimist

Universe now half full with bubbles with size

$$R_1 \simeq M_{\rm pl}^{2/3} / T_c^{5/2}$$

R₁ Pessimist

Universe now half full with bubbles with size

$$R_1 \simeq M_{\rm pl}^{2/3} / T_c^{5/2}$$

Stage 4: Pockets

Optimist

Universe now half full with pockets with size

$$\frac{\prod R_1}{R_1} = \frac{R_1}{R_1} \simeq \frac{M_{\rm pl}^{2/3}}{T_c^{5/2}}$$

Pockets shrink

condensing quarks and antiquarks

Pockets shrink

condensing quarks and antiquarks

quarks cannot escape

$$\Gamma_{\text{string}} \sim \frac{m_q}{4\pi^3} e^{-m_q^2/\Lambda^2}$$

only hadrons can escape

quarks cannot escape

$$\Gamma_{\text{string}} \sim \frac{m_q}{4\pi^3} e^{-m_q^2/\Lambda^2}$$

only hadrons can escape

Stage 5: Squeezeout

 R_1

baryons are formed in the pocket

baryons squeeze out from the pocket

Stage 5: Squeezeout

 R_1

baryons are formed in the pocket

baryons squeeze out from the pocket

Baryon survival rate

- Complicated physics based on recombination rates, binding energies, quark pressure, wall speed, baryon speed, etc..
- Quarks, mesons and baryons, equilibrate $N_B \ll \ll N_M$
- Mesons decays when formed, depleting all states.

Baryon survival rate

- Complicated physics based on recombination rates, binding energies, quark pressure, wall speed, baryon speed, etc..
- Quarks, mesons and baryons, equilibrate $N_B \ll \ll N_M$
- Mesons decays when formed, depleting all states.

Accidental Asymmetry

• All quarks and anti-quarks are eliminated except for

Asymmetric component!

• Accident in each pocket

$$|N_Q - N_{\bar{Q}}| \simeq \sqrt{N_Q}$$

• All we need know is original number in pocket

$$\sqrt{N_Q^{\text{pocket}}} = \sqrt{\frac{4}{3}\pi R_1^3 N_{\bar{Q}}^{\text{freeze-out}}}$$

Accidental Asymmetry

• All quarks and anti-quarks are eliminated except for

Asymmetric component!

• Accident in each pocket

$$|N_Q - N_{\bar{Q}}| \simeq \sqrt{N_Q}$$

• All we need know is original number in pocket

$$\sqrt{N_Q^{\text{pocket}}} = \sqrt{\frac{4}{3}\pi R_1^3 N_{\bar{Q}}^{\text{freeze-out}}}$$

Whole picture

Whole picture

Parameter space

Confinement Scale, $\Lambda[TeV]$

Further squeeze-out

- Consider charged quarks:
 - Long ranged forces wash out asymmetry much heavier dark matter
 - can lead early matter dominated era
- Consider different mediators to the visible sector.
- Gravitational wave signal.
- More careful escape rate calculation from the walls.

Preliminary

Outlook

- Lots of activity for thermal dark matter.
- Many different interactions, processes, and their relative importance throughout the cosmological history.
- Novel dark matter frameworks.
- Generic.
- Discovery—often point to string indirect detection signal.
- Much more to do.