Vertex era-ZW-Fac ecision Je QCD portuniti es ime otic ares Prod Bc C Detector le uonCKMI FV Jets

Lingfeng Li (Brown University) Jan. 18, 2022 IAS Program on High Energy Physics, HKUST

"Don't just leave flavor physics to flavor physicists."

[Someone Awesome, 2019?]

"Non-flavor physicists must be amused first." [me, 2022]

Disclaimer: Priorities are given to numerical results with (fast or full) simulations in stead of theory. Apologize for any important missing contributions due to personal ignorance and prejudice.

Recent progress on Flavor Physics Opportunities at e^-e^+ Colliders

Introduction

- Theory motivation: Why flavor physics?
- Project overview: experiment and data.
- Recent progress
 - CKM and CPV parameter measurements.
 - Semileptonic and leptonic decays.
 - Low multiplicity and au physics.
- Community activities.

Theoretical Motivation

Two fundamental driving forces for studying flavor physics:

Probing new physics (NP).

Sensitive to particular new physics.

"Traditional", but really?

Lingfeng Li (Brown U.)

Flavor Opportunities at ee Colliders

Flavor Physics Probing BSM

Inclusive decay width of heavy flavor (W-induced charged current):

Assuming new physics with scale $\Lambda_{\rm NP}\gtrsim$ TeV contributes as:

$$\begin{split} \Gamma_{\rm BSM} \propto \frac{m_f^5}{\Lambda_{\rm NP}^2 m_W^2} \ (\text{w/ interference}), \ \text{or} \ \frac{m_f^5}{\Lambda_{\rm NP}^4} \ (\ \text{w/o interference}) \end{split}$$

Moderate suppression $\left(\frac{m_W^2}{\Lambda_{\rm NP}^2} \ \text{or} \ \frac{m_W^4}{\Lambda_{\rm NP}^4} \gg \frac{m_f^4}{\Lambda_{\rm NP}^4} \right)$ at low costs.

Flavor Physics Probing BSM (II)

Stronger features if looking for flavor-changing-neutral currents (FCNC), CPV, lepton flavor universality violation (LFUV), lepton flavor violation (LFV), lepton number violation (LNV), baryon number violation (BNV)...

Also chances for direct BSM productions: light resonances, long-lived particles (LLPs), missing energy...

Knowing the SM ⇒ Full Understanding

Some amplitudes of D decay to 2 pesudoscalars [Müller et al., 2015]

Measurements to be improved [Amhis et al., 2019]

Tensions within the SM [Ricciardi and Rotondo, 2020]

A Closer Look at the SM

All cases call for more data: Measuring rates \rightarrow differential Xsecs \rightarrow amplitude analysis ...

Another example, from PDG 2021:

 B^0 : $\gtrsim 200~{\rm CPV}$ entries, $\sim 570~{\rm decay}$ entries, 20+ pages:

B_c : ZERO CPV entry, $\lesssim 50$ decay entries:

The following matrices $\Gamma_{\mu}T \simeq 0.03 \rightarrow -8_{\mu}3$.	re nat pure investo	g salas, salar i	in Fundam	
J/v(15)C*spanything	(14.5)	\$3×30 ⁴		
AV0.84*	-			1171
AVD/DR*	100			256
				1000
J/0(15)a-(1290)	111	+ 20-2	275	2249
AVD R* K* #*	100			2008
	-			2904
v(15)r*	8444			205
AVRISIO [®] K*	-			
3/v(15[0*(2007]*#*	-			14.0
YA(12[0J(300], K _{n0}	1000			- 634
Y/(18)0, K-g	1007			1157
7/03/01	-			160
V(120**	-			1120
AN(18)#7**	1007			1767
44	(2.4 🛀	\$3+H ⁻¹		2005
1211	0.0 100			26%
D.(3836), Da	< 6.2	+ 1017 8	905	140
D. Y.o.	< 0.25	1.251	85	1963
D' K''	< 0.36	+ 2017	97%	1703
D ⁴ ₂ K ^{ap}	< 0.38	10.4	90%	2763
WITTE CODE LOS COM	Eres 1	Count		
				-
Comm. M. Deubert and	construction (mail, P		en profit	
D' A''	< 0.4	+ 381-5	95	2951
D*++	< 0.82	1.001	95	1157
K+K ⁰	< 4.6	+ 10 ⁻⁷	90%	1044
Rhet (03 0)	0.001	Ster 11-2		

Future e^+e^- Colliders

Plan Ahead for the Future *Z* **Factories**

			ttbar	Higgs	W	Z
Nu	mber of IPs			2		
SR Ha Be	Operation mode \sqrt{s} [GeV]		ZH	z	w⁺w [.]	ttbar (new)
En En Pis			~ 240	~ 91.2	~ 160	~ 360
Bu	F	Run time [years]	7	2	1	7.7
Be Me		L / IP [×10 ³⁴ cm ⁻² s	¹] 3	32	10	
En Be	CDR	$\int L dt$ [ab ⁻¹ , 2 IPs] 5.6	16	2.6	
Bu En Fn		Event yields [2 IPs] 1×10 ⁶	7×10 ¹¹	2×107	
Be RF		L / IP [×10 ³⁴ cm ⁻² s	¹] 5.0	115	15.4	0.5
RF HC Lo Be Be	Latest	$\int L dt$ [ab ⁻¹ , 2 IPs	9.3	57.5	4.0	1.0
		Event yields [2 IPs	i] 1.7×10 ⁶	2.5×1012	3×107	3×10 ⁵
Ho	ar glass Fact	or	0.89	0.9	0.9	0.97
Lur	ninosity per	IP[1e34/cm^2/s]	0.5	5.0	16	115

CEPC [Dong et al., 2018] pprox 2.5×Tera-Z

FCC-ee [Abada et al., 2019] $\approx 7 \times$ Tera-Z

The Giga-Z project at ILC [Fujii et al., 2019] also contributes, rescale results by $1/\sqrt{1000}\approx 0.03.$

Flavor Physics at Future e^+e^- colliders

	Channel	Belle II	LHCh	Giga_Z	Tera-Z	
	$B^0 \bar{B}^0$	5.3×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^8	1.2×10^{11}	
Z Factory \supset Flavor Factory	B^{\pm}	5.6×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^{8}	1.2×10^{11}	
	B_s, \bar{B}_s	5.7×10^8	$\sim 2 \times 10^{13}$	3.2×10^7	3.2×10^{10}	
Elavor physics "for froo"	B_c^{\pm}	-	$\sim 4 \times 10^{11}$	2.2×10^5	2.2×10^8	
riavor physics for free .	$\Lambda_b, \overline{\Lambda}_b$	-	$\sim 2\times 10^{13}$	$1.0 imes 10^7$	$1.0 imes 10^{10}$	
	$c, \ \bar{c}$	2.6×10^{11}	$\gtrsim 10^{14}$	2.4×10^8	$2.4 imes 10^{11}$	
	τ^+, τ^-	9×10^{10}	-	$7.4 imes 10^7$	$7.4 imes 10^{10}$	
KLOE BESIII Belle II	Те	Top-F Higgs-Fac W-Factory ra-Z	actory tory		_	
$m_K m_\phi m_{J/\Psi} m_{Y4S}$	r	m _Z m _{H+Z} LEP L	ATLAS H C b	Scale /CMS	>	
VS B Factories	١	VS. Hadı	ron Collic	lers		
		Clean anvironment				
Much higher b quark bo	ost			ment		
5 1		Dire	ct missin	σ mome	enta	
Abundant heavy b hadro	n	- Dire		8	lina	
, , , , , , , , , ,		measurement				

Key Detector Features for Flavor Physics

Advanced PID coming from the combination of different methods.

- Flavor tagging for everything.
- Suppressing backgrounds in general.
- Clean leptonic/baryonic modes.

Calorimetry gives neutral energy and angular resolution.

- ▶ Better *p* measurement for neutrinos.
- Excited states such as D_s^* and radiative decays.
- Distinguishing $\pi^0/\eta...$, allowing h^0X modes.

See also Peter Krizan and Philip Allport's talks.

Tracking sys. grants $\mathcal{O}(10)$ fs sensitivity.

- High time precision for CPV measurements.
- Authentic c/τ reconstruction inside a jet.
- Greater purity for displaced signals.

Vs. Current/Upgraded Experiments: How do Golden Modes Look Like?

Multiple charged tracks

Multiple short time scales

- h^0 or γ (but not too many)
 - e instead of μ ?
 - ν or other invisible fellas

 Λ or $K_S \to h^+ h^-$

Baryonic modes (p or Σ^{\pm} ?)

Heavy hadrons $(B_s, B_c, \Lambda_b, \Xi_b ...)$

Multi-heavy-flavor (B_c , exotics...)

- Vs. B factories, low track energy
- Vs. B factories, low track displacement

Vs. LHCb, larger noise

- Vs. Hadron colliders, relying on MS
- Vs. Hadron colliders, low sensitivity
- Vs. Hadron colliders, low acceptance

Vs. both, advanced PID

- Vs. B factories, Limited \sqrt{s}
- Vs. both, unique @ the Z pole

Key Detector Performances for Flavor Physics

Flavor physics is the very demanding for the detector.

To fully unleash the Tera-Z power:

Detector "benchmarks"	Typical physics interpretation
$\pi/K \gtrsim 4\sigma, \ p/K \gtrsim 2\sigma$ @50 GeV	Greatly reduced mis-ID/comb.
$\pi/K\gtrsim 5\sigma, \ p/K\gtrsim 3\sigma$ @ $\lesssim 2$ GeV	systematics, tagging power, soft tracks
$\mu/\pi\gtrsim 1(2)\sigma$ @< (>)4GeV (in jets?)	Unambiguous sign of different leptons
$e/\pi\gtrsim 3\sigma$, $e/\mu\gtrsim 5\sigma$ (in jets?)	(non-trivial physics when ℓ meets h)
$\sigma_{p_T,\mathrm{track}}/p_T^2 \lesssim 2 imes 10^{-5} \ \mathrm{GeV^{-1}}$	Unprecedented narrow $m_{\ell\ell}$ peaks
$\sigma_{ m IP} \lesssim 5 \bigoplus 10/p_T \ \mu{ m m}$	(Multiple) short time scales recovered
$\sigma_{E,\mathrm{ECAL}}/E \lesssim 5\%/\sqrt{E} \bigoplus 0.5\%$	Recognize single $\gamma/\pi^0/$ in jets
$\sigma_{ heta,\mathrm{ECAL}}\lesssim 5\mathrm{mrad}$	Able to find peaks w/ neutrals
$\sigma_{E,\mathrm{HCAL}}/E \lesssim 50\%/\sqrt{E}$ @ 50 GeV	With the above $\Rightarrow ot\!\!/ p$, m_{jj} and $m_{ m recoil}$
$\gamma/K^0/n$ discrimination?	New channels & lower bkgs.

Aggressive, more realistic with $N_{detector} > 1$?

Challenges in Software, Resources, and Analyses

Authentic full detector simulation is expensive, cost \gg MC generators:

- ▶ Storage requirement for 10^{12} fully simulated $e^+e^- \rightarrow Z$: $\mathcal{O}(1) \text{ EB} \sim \mathcal{O}(10^6) \text{ TB}.$
- ▶ Time needed: $\mathcal{O}(10^{10})$ CPU hours.
- Calibration and development of packages...
- Validation of generated samples...

Most problems can be avoided at current stage by fast simulation and smart strategy.

Physics: CKM and CPV

Current status of the unitarity triangle

Can also probed by the other two triangles.

Opportunities with CKM and CPV

Cracks of the CKM picture indicate NP.

Goal of CKM Measurements

FCC-ee proposed target [Charles et al., 2020], see also [Abada et al., 2019].

$ V_{ud} $	0.97437	± 0.00021	id	id	id
$ V_{us} f_+^{K \to \pi}(0)$	0.2177	± 0.0004	id	id	id
$ V_{cd} $	0.2248	± 0.0043	± 0.003	id	id
$ V_{cs} $	0.9735	± 0.0094	id	id	id
$\Delta m_d \; [\mathrm{ps}^{-1}]$	0.5065	± 0.0019	id	id	id
$\Delta m_s \ [\mathrm{ps}^{-1}]$	17.757	± 0.021	id	id	id
$ V_{cb} _{\rm SL} \times 10^3$	42.26	± 0.58	± 0.60	± 0.44	id
$ V_{cb} _{W \to cb} \times 10^3$	42.20				? ±0.17✓
$ V_{ub} _{\mathrm{SL}} imes 10^3$	3.56	± 0.22	± 0.042	± 0.032	id
$ V_{ub}/V_{cb} $ (from Λ_b)	0.0842	± 0.0050	± 0.0025	± 0.0008	id
$\mathcal{B}(B o au u) imes 10^4$	0.83	± 0.24	± 0.04	± 0.02	± 0.009
$\mathcal{B}(B o \mu \nu) imes 10^6$	0.37		± 0.03	± 0.02	id
$\sin 2\beta$	0.680	± 0.017	± 0.005	± 0.002	± 0.0008
$\alpha \ [^{\circ}] \ (\mathrm{mod} \ 180^{\circ})$	91.9	± 4.4	± 0.6	id	? id
$\gamma \ [^{\circ}] \ (\mathrm{mod} \ 180^{\circ})$	66.7	± 5.6	± 1	± 0.25	±0.20 🗸
$\beta_s [\mathrm{rad}]$	-0.035	± 0.021	± 0.014	± 0.004	± 0.002
$A^d_{ m SL} imes 10^4$	-6	± 19	± 5	± 2	± 0.25
$A^s_{ m SL} imes 10^5$	3	± 300	± 70	± 30	± 2.5

Progress in CKM Measurements

FCC study for various CPV measurements Fast simulation, tagging power $\simeq 22\%$ Using $B_s \rightarrow D_s K^{\pm}$, $B_s \rightarrow J/\psi \phi$ [Aleksan et al., 2021a],

& $B^{\pm} \rightarrow D^0(\bar{D^0})K^{\pm}$ [Aleksan et al., 2021b] \Rightarrow

- $\bullet \quad \sigma(\alpha_s) \simeq \sigma(\gamma) \simeq \\ 0.4^{\circ}$
- $\blacktriangleright \ \sigma(\beta_s) \simeq 0.035^{\circ}$
- $\sigma(\gamma_s) \sim \mathcal{O}(1^\circ)$

CEPC study of $B_s \rightarrow J/\psi\phi$ [Zhao, 202X] Full simulaiton, Tera-Z, tagging power $\simeq 20\%$ $\sigma(\beta_s) \simeq 0.12^{\circ}$ (Compatible w/ the above)

Using fully charged channels only.

The less constrained angle $\alpha(\phi_2)$ determined via the $b \rightarrow u\bar{u}d$ transition $(B \rightarrow \pi\pi, \rho\rho...)$ [Charles et al., 2017, Altmannshofer et al., 2018].

Bottleneck: $B_{(s)} \rightarrow 2\pi^0 \rightarrow 4\gamma$, suppressed mode, SM BR $\lesssim 10^{-6}$. [Wang, 202X]

Accuracy	$B^0 \rightarrow \pi^0 \pi^0$	$B^0{}_s ightarrow \pi^0\pi^0$
17%/√E⊕1% (CEPC baseline)	~1.32%	~23.1%
3%/√E⊕0.3% (σ _{mB} ~30 MeV)	~0.44%	~4.4%

More importantly, $B\to\rho\rho\to 4\pi,$ allows vertexing.

 $\sigma(\alpha) < 1^{\circ} \text{ if } \sigma(\mathsf{BR}(B \to \rho \rho))$ better than $\sigma(\mathsf{BR}(B \to \pi^0 \pi^0)).$ One of the most precise measurements of $|V_{cb}|$ by inclusive $W \rightarrow cb$ measurements (Stat. only!) Need W factory mode ($10^8 WW$ pairs).

Also from measuring B_c decays (1%), need to understand $Z \rightarrow b\bar{b}c\bar{c}$ to fix inclusive B_c fraction [Charles et al., 2020]. Lifetime, mass difference, CPV in meson mixings... [Ellis et al., 2019]

It's the right time to take a deep breath because I have just finished most CPV related pages.

If lepton flavor universality are not violated, good theoretical predictions for the following ratios:

$$R_{K^{(*)}} \equiv \frac{\mathsf{BR}(B \to K^{(*)}\mu^+\mu^-)}{\mathsf{BR}(B \to K^{(*)}e^+e^-)} , \qquad (1)$$

$$R_{D^{(*)}} \equiv \frac{\mathsf{BR}(B \to D^{(*)}\tau\nu)}{\mathsf{BR}(B \to D^{(*)}\ell\nu)} , \qquad (2)$$
$$R_{J/\psi} \equiv \frac{\mathsf{BR}(B_c \to J/\psi\tau\nu)}{\mathsf{BR}(B_c \to J/\psi\ell\nu)} . \qquad (3)$$

Systematic uncertainty largely cancel.

B Anomalies Indicating LFUV

FCCC and FCNC (Semi)Leptonic b Decays

 $\begin{array}{l} \mbox{Charged current}\\ B_c \rightarrow \tau \nu \mbox{ [Zheng et al., 2020, Amhis et al., 2021].}\\ \mbox{Absolute precision} \sim 10^{-4} \end{array}$

 $R_{J/\psi}, R_{D_s^{(*)}}, R_{\Lambda_c}$ [Kwok et al., 202X].

Neutral current $b\to s\tau\tau$ decays [Li and Liu, 2020]. Absolute precision $\lesssim 10^{-6}$

Neutral current $B_s \rightarrow \phi \nu \bar{\nu}$ decay [Li et al., 2022]

Absolute precision $\sim 10^{-7}$.

Many unique modes, as Tera-Z is good at τ and ν in general.

Lingfeng Li (Brown U.)

Flavor Opportunities at ee Colliders

Charged Current Decays

 $B_c \rightarrow \tau \nu$ @ Tera-Z

[Zheng et al., 2020, Amhis et al., 2021]

For both $\tau \to \mu \nu$ and $\tau \to 3\pi \nu$ decays, reaching $\mathcal{O}(1\%)$ precision.

Various $b \to c \tau(\ell) \nu$ decays [Kwok et al., 202X]

- $\tau \rightarrow \mu \nu$ mode, (stat. only):
 - $\blacktriangleright \ \sigma(R_{J/\psi}) \lesssim \frac{3\%}{2}.$
 - $\label{eq:stars} \begin{array}{l} \bullet \quad \sigma(R_{D_s^{(*)}}) \lesssim 0.5\%, \\ \text{w/ correlation} \lesssim 0.5. \end{array} \end{array}$
 - $\sigma(R_{\Lambda_c}) \lesssim 0.3\%$.

FCNC $b \rightarrow s \tau \tau$ Decays

	Properties	Decay Mode	BR
-±	$m = 1.777 \mathrm{GeV}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\nu$	9.3%
-7 =	$c\tau = 87.0 \ \mu m$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}\nu$	4.6%
D±	m = 1.968 GeV	$\tau^{\pm}\nu$	5.5%
D_s^-	$c\tau = 151 \ \mu {\rm m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp} + X$	> 6%
D+	m = 1.870 GeV	$\tau^{\pm}\nu$	< 0.12%
<i>D</i> =	$c\tau=311~\mu{\rm m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp} + X$	> 4%
	Background types	Тур	ical BR
$b \rightarrow c \bar{c} s$	(e.g. $B_s \rightarrow K^{*0} D_s^{(*)}$	$^{+}D^{(*)-}) O(10^{-}$	$(2 - 10^{-3})$
$b \rightarrow c \tau \nu$	• (e.g. $B^0 o K^{*0} D^0_s$	$^{*)-}_{\tau}\tau^{+}\nu) O(10^{-}$	$-3 - 10^{-5}$)
$b \rightarrow c \bar{u} c$	l (e.g. $B^0 ightarrow D^{(*)-}\pi$	$^{+}\pi^{+}\pi^{-}) O(10^{-}$	$(2 - 10^{-3})$

- $\Leftarrow {\rm Extremely\ large\ bkg\ from\ } D_{(s)} \ {\rm fakeing\ } \tau \to 3\pi\nu.$
 - ► Calorimetry removing X.
 - Vertexing for kinematics.
 - Excellent PID.

Approaching SM rates: $\sigma({\sf BR}(bs au au))\lesssim {\cal O}(10^{-5}-10^{-6})$ [Li and Liu, 2020]

Lingfeng Li (Brown U.)

FCNC $b \rightarrow s \nu \bar{\nu}$ Decay

 $B_s \rightarrow \phi \nu \bar{\nu}$ (full sim.), one of the best channels [Li et al., 2022].

Reconstruction with a simple algorithm $\sigma(E_{B_s}) \lesssim 2$ GeV, $\sigma(q^2 \equiv m_{\nu\bar{\nu}}^2) \lesssim 3$ GeV². $\sigma(\mathsf{BR}) \lesssim 2\%$, $\sigma(F_L) \lesssim 10\%$.

SMEFT Fits of LFUV Opeartors

Hold on, we are not done with au yet!

Low multiplicity and τ physics

The high purity and large statistics ($\gtrsim 10^{-10}$) of $Z \rightarrow \tau \tau$ leave huge room for τ physics. [Dam, 2019]

- Flavor universality tests via $\tau \rightarrow \ell \nu \bar{\nu}.$
- SM suppressed/forbidden τ decay modes.
- Precise measurement of hadronic τ channels, especially for high s (E_ν ~ 0).
- Polarization of \(\tau\) in Z decay are sensitive EW probes.

Low multiplicity and τ physics

Current validations focus on lepton flavor/number violating modes [Altmannshofer et al., 2018][Dam, 2019][Yu, 202X]

Measurement	Current	FCC Projection	Update	Comments
Lifetime [sec]	$\pm 5 \times 10^{-16}$	$\pm 1 \times 10^{-18}$		3-prong decays, stat. limited
$BR(\tau \rightarrow \ell \nu \bar{\nu})$	$\pm 4 \times 10^{-4}$	$\pm 3 \times 10^{-5}$		Assumed $0.1 \times$ syst.(ALEPH)
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(\vec{p}_{\mathrm{track}})$ limited
$BR(\tau \rightarrow 3\mu)$	$<2.1\times10^{-8}$	$O(10^{-10})$	\checkmark	bkg free
$BR(\tau \rightarrow 3e)$	$< 2.7 \times 10^{-8}$	$O(10^{-10})$		bkg free
$BR(\tau^{\pm} \rightarrow e\mu\mu)$	$<2.7\times10^{-8}$	$O(10^{-10})$		bkg free
$BR(\tau^{\pm} \rightarrow \mu ee)$	$< 1.8 \times 10^{-8}$	$O(10^{-10})$		bkg free
$BR(\tau \to \mu \gamma)$	$< 4.4 \times 10^{-8}$	$\sim 2 \times 10^{-9}$	$O(10^{-10})$	$Z ightarrow au au \gamma$ bkg , $\sigma(p_{\gamma})$ limited
$BR(\tau \rightarrow e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2 \times 10^{-9}$		$Z \rightarrow \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited
$BR(Z \rightarrow \tau \mu)$	$< 1.2 \times 10^{-5}$	$O(10^{-9})$	\checkmark	$ au au$ bkg, $\sigma(ec{p}_{ ext{track}})$ & $\sigma(E_{ ext{beam}})$ limited
$BR(Z \rightarrow \tau e)$	$<9.8\times10^{-6}$	$O(10^{-9})$		$ au au$ bkg, $\sigma(\vec{p}_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limited
$BR(Z \rightarrow \mu e)$	$< 7.5 \times 10^{-7}$	$10^{-8} - 10^{-10}$	$O(10^{-9})$	PID limited

Slightly stronger than the luminosity-projected Belle II limits (~ 50 more channels to go!).

Similar samples also used to validate exclusive, low-multiplicity hadronic Z decays [Grossman et al., 2015]

- Probing hadron behaviors at high energy scales.
- ► $Z \to X\gamma$ channels help calibration of $H \to X\gamma$, which measures light quark Yukawas.

Measurement	Current	FCC Projection	Update	Comments
$BR(Z \to \tau \mu)$	$< 1.2 \times 10^{-5}$	$O(10^{-9})$	\checkmark	$ au au$ bkg, $\sigma(\vec{p}_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limited
$BR(Z \rightarrow \tau e)$	$< 9.8 imes 10^{-6}$	$O(10^{-9})$		$ au au$ bkg, $\sigma(ec{p}_{ ext{track}})$ & $\sigma(E_{ ext{beam}})$ limited
$BR(Z \rightarrow \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$O(10^{-9})$	PID limited
$Z \to \pi^+ \pi^-$			$O(10^{-10})$	$\sigma(ec{p}_{ ext{track}})$ limited, good PID
$Z \to \pi^+ \pi^- \pi^0$			$O(10^{-9})$	au au bkg
$Z \rightarrow J/\psi \gamma$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma + au au\gamma$ bkg
$Z \to \rho \gamma$	$<2.5\times10^{-5}$		$O(10^{-9})$	$ au au\gamma$ bkg, $\sigma(ec{p}_{ ext{track}})$ limited

Community Activities

05:30	Use cases for an extreme electromagnetic resolution 1	© 30m	10100	Speaker: Lingfeng Li (Brown University) Material: Stides 🔁
06:00	agreener, ny Arenae (Jeneral Parisana (PA) PCDas werk 2020	0.00.0	11:00	Flavor/CPV prospects and opportunities at a Tera-Z 30' Speaker: Zoltan Ligeti (UC Berkeley) Material: since #
0000	Speaker: Stephana Montell (Diversit Central Auropa (Pil) Project (CCe.20. Project Central	(y zam	11:30	Lepton identification and backgrounds for flavor studies at the CEPC 30' Speaker: Dan YU (IHEP)
08:00	Panyour studies at the Tera-Z factory Speaker: UNIGENIS L((no.st) B Sides.comm.pdf	() 30m	12:00	Tests of lepton flavor universality at high-energy e+e- colliders 30' Speaker: Andreas Crivelar (PS1)
10:00	Study of Bs -> Ds K at FCC-ee and constraints on detector 1 Speaker: Roy Aleksan (Investel Paris Satlar (PR)	© 25m	14:00	Strange jet tagging 30" Speaker: "Wichiro Nakai (Shanghai Jiao Tong University) Material: Sildes 1
03:50	PCCcce week 2020 FCCcce week 2020 Foccerding Flavour tagging in W decays	© 25m	14:30	LFV Z decays at a Tera-Z factory 30' Speaker: Xabier Marcano (Madrid U) Material: Sildes 🔁
05:00	Speaker: Polo Azzumi (MH Section di Pisu, Università e Sociali Annale Septime, P) Azzumi FCCeeNHEp. Universe cualificate de charm and flucture tanonico.	0.25-	15:00	Prospects for $B_c \rightarrow \tau \nu$ 30' Speaker: Yasmine Amhis (IJCLab Orsay) Material: Sinder 11
	Speakers: Loukas Gouskos (CIN), Michele Selvaggi (CIN) R. foow, werkelep.	0.5	10:30	Physics analyses and detector requirement study from Benchmark study of B0/Bs->2 piD 24' Speaker: 'uexin Wang
05:25	Tau-identification in the Dual readout calorimeter Speakers: Stefano Glagu, Stefano Glagu (tauesa kinesia e hi fu forma ((T)) ⁽¹⁾ IstalD.asteriate.	© 20m	10:54	Material: Sildes 📆 Jet Charge Reconstruction based on leading jet charged particle 24' Speaker: Cull Hanhua
05:45	First steps with flavour physics studies at FCC-ee Speaker: Donal Hill (1911. Exclusion-physical samare (21))	@25m	11:18	Material: Slides 👩 Physics analyses and detector optimization study based on Benchmark study of H->bb,
	ECC.workshop.Nov.			Cry ga AT Speaker:朱永峰 Material: Slides 型

10:30 h > seriat a Tora 7 20

Flavor Physics White Paper

To quantify flavor physics potential with benchmark analyses.

- ► To motivate design optimization & maximize the physics output
- ▶ Possibility: from CEPC specific \rightarrow generic future e^+e^- colliders.

1	Introduction	1
2	Description of CEPC facility 2.1 Key Collider Features for Flavor Physics 2.2 Key Detector Features for Flavor Physics	1 2 2
3	Charged Current Semileptonic and Leptonic b Decays	3
4	Rare/Penguin and Forbidden & Decays 1. Dispetorie Modes 2. Neutron Modes 4.3 Relative Modes 4.3 Relative Modes 4.4 Lepton Flavor Violating (LFV), Lepton Number Violating(LNV) and Baryon Number Violating (ISNY) Decays	4 5 6
5	Hadronic b Decays and CP Violation Measurements	7
6	Spectroscopy and Exotics	8
7	Charm Physics	9
8	τ Physics	9
9	Flavor Physics at Higher Energies 9.1 Flavor Physics from Z Decays 9.2 Flavor Physics from Decays 9.3 Flavor Physics from Higgs and Top	10 11 11 12
10) Two Photon and ISR Physics with Heavy Flavors	12
11	Summary	13

Regular meetings on the flavor physics WP

Future workshop planned: March - April.

Summary

- Tera-Z (and beyond) is a powerful machine for flavor physics studies, as it is for EW, Higgs, QCD, and BSM studies.
- ► Flavor physics at Tera-Z benefit from:
 - Large luminosity (from accelerator physics)
 - 2 Clean environment and moderate energy (from m_Z)
 - Good or even revolutionary detectors (from detector R&D)
- Recent progresses including:
 - Certain CKM element measurements.
 - (Semi)leptonic decays to resolve *B* anomalies.
 - **③** Rare τ and Z exclusive decay modes.
- The community is still moving forward.

Aaij, R. et al. (2020).

Test of lepton universality with $\Lambda^0_b \to p K^- \ell^+ \ell^-$ decays. JHEP, 05:040.

Aaij, R. et al. (2021).

Test of lepton universality in beauty-quark decays.

- Aaij, R. et al. (2022). Observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$.
- Abada, A. et al. (2019).
 FCC Physics Opportunities.
 Eur. Phys. J., C79(6):474.
- Aleksan, R., Oliver, L., and Perez, E. (2021a).
 CP violation and determination of the bs "flat" unitarity triangle at FCCee.
- Aleksan, R., Oliver, L., and Perez, E. (2021b). Study of CP violation in B^{\pm} decays to $\overline{D^0}(D^0)K^{\pm}$ at FCCee.

- Altmannshofer, W. et al. (2018). The Belle II Physics Book.
- Amhis, Y., Hartmann, M., Helsens, C., Hill, D., and Sumensari, O. (2021). Prospects for $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ at FCC-ee.
- Amhis, Y. S. et al. (2019).

Averages of *b*-hadron, *c*-hadron, and τ -lepton properties as of 2018.

Charles, J., Deschamps, O., Descotes-Genon, S., and Niess, V. (2017).
 Isospin analysis of charmless B-meson decays.
 Eur. Phys. J. C, 77(8):574.

 Charles, J., Descotes-Genon, S., Ligeti, Z., Monteil, S., Papucci, M., Trabelsi, K., and Vale Silva, L. (2020).
 New physics in *B* meson mixing: future sensitivity and limitations.

Lingfeng Li (Brown U.)

Phys. Rev. D, 102(5):056023.

Dam, M. (2019).

Tau-lepton Physics at the FCC-ee circular e^+e^- Collider. *SciPost Phys. Proc.*, 1:041.

- Dong, M. et al. (2018). CEPC Conceptual Design Report: Volume 2 - Physics & Detector.
- Ellis, R. K. et al. (2019). Physics Briefing Book: Input for the European Strategy for

Particle Physics Update 2020.

Fujii, K. et al. (2019).

Tests of the Standard Model at the International Linear Collider.

Grossman, Y., Konig, M., and Neubert, M. (2015). Exclusive Radiative Decays of W and Z Bosons in QCD Factorization.

Lingfeng Li (Brown U.)

JHEP, 04:101.

- Kwok, A., Jiang, X., Li, L., and Liu, T. (202X). Tera-Z studies of semileptonic b decays.
- Li, L. and Liu, T. (2020). $b \rightarrow s\tau^+\tau^-$ Physics at Future Z Factories.
- Li, L., Ruan, M., Wang, Y., and Wang, Y. (2022). The analysis of $B_s \rightarrow \phi \nu \bar{\nu} \tau$ CEPC.
- Müller, S., Nierste, U., and Schacht, S. (2015).
 Topological amplitudes in D decays to two pseudoscalars: A global analysis with linear SU(3)_F breaking.
 Phys. Rev. D, 92(1):014004.
- Ricciardi, G. and Rotondo, M. (2020).
 Determination of the Cabibbo-Kobayashi-Maskawa matrix element |V_{cb}|.
 J. Phys. G, 47:113001.

Tanabashi, M. et al. (2018). Review of Particle Physics. Phys. Rev., D98(3):030001.

Wang, Y. (202X).

Physics analyses and detector requirement study from Benchmark study of $B^0/B_s \to 2\pi^0$.

Yu, D. (202X).

Lepton identification and backgrounds for flavor studies at the CEPC.

Zhao, M. (202X).

Feasibility study of CP-violating Phase ϕ_s measurement via $B_s \beta J/\psi \phi$ channel at CEPC.

Then, T., Xu, J., Cao, L., Yu, D., Wang, W., Prell, S., Cheung, Y.-K. E., and Ruan, M. (2020). Analysis of $B_c \rightarrow \tau \nu_{\tau}$ at CEPC.