Multi-Messenger Astronomy: An Overview for Particle Physicists

John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

What Are the Goals of High-Energy Physics?

Probe fundamental particles and forces

Explain emergent phenomena

Search for new physics

John Beacom, The Ohio State University

Three Ways of Making Progress

Laboratory

Cosmology

Highest precision

Growing precision

Emerging precision

John Beacom, The Ohio State University

Choose Your MMA Fighter

Messenger	Best Probe of	Weakness
photons (sub-MeV)	thermal sources	attenuates easily
cosmic rays	accelerators	deflects
gamma rays	nonthermal sources	attenuates
neutrinos	hidden sources	detection is hard
gravitational waves	dense dynamics	localization
dark matter	halo	not detected yet

Talk Outline

Introductory Remarks

Extreme-Coverage Frontier

Extreme-Luminosity Frontier

Extreme-Energy Frontier

Concluding Remarks

John Beacom, The Ohio State University

Extreme-Coverage Frontier

Solar, HE range (MeV–GeV)

John Beacom, The Ohio State University

Solar: Motivations

How do cosmic rays interact in the Sun's magnetic environment? (Nobody really knows)

How does this produce gamma rays and neutrinos? (Nobody really knows)

What other processes can do this? (Nobody really knows)

Elongation angle (degrees)

ar: Orientation

-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN (2011)

Predictions from Seckel, Stanev, Gaisser (1991)

The solar disk gamma-ray emission is extremely weird!

(Ohio State group: Beacom, Linden, Ng, Peter, Tang, Zhou, Zhu, and friends)

Solar: Hope

John Beacom, The Ohio State University

10

Solar: MMA

Linden et al. (2018) and related works for high-energy implications

John Beacom, The Ohio State University

Solar: BSM

HAWC, Beacom, Leane, Linden, Ng, Peter, Zhou (2018)

John Beacom, The Ohio State University

Extreme-Luminosity Frontier

VHE range (TeV–PeV)

John Beacom, The Ohio State University

VHE Fluxes: Motivations

Nature's most luminous accelerators? (Yes, powering the cosmic rays that shape galaxies)

Evidence of dark matter annihilation or decay? (Not yet, but we have not finished looking)

Probe new physics in neutrino sector? (Yes, especially if we know the astrophysics better)

VHE Fluxes: Orientation (Co-Production)

Hadronic mechanism:

$$\begin{array}{ll} p + p \rightarrow p + p + \pi^{0} & \pi^{0} \rightarrow 2\gamma \\ \rightarrow p + n + \pi^{+} & \pi^{+} \rightarrow e^{+} + 3\nu \end{array}$$

Leptonic mechanism:

$$e + \gamma \rightarrow e + \gamma$$

Production always makes a mess; propagation makes more

VHE Fluxes: Orientation (GeV–TeV Gamma Rays)

Milky Way diffuseMilky Way sources

- ✓ Extragalactic diffuse
- ✓ Extragalactic sources

SNRs and PWNe

Pulsars

BL Lacs

FSRQs

Unc. Blazars

Other EGAL

Other GAL

Unknow

Λ

Unassociated

Fermi

Extended

VHE Fluxes: Accomplishments (Cosmic Rays)

✓ Milky Way diffuse X Milky Way sources

- X Extragalactic diffuse
- X Extragalactic sources

 $m^{-1}sr^{-1}s^{-1}GeV^{1.7}$]

105

17

VHE Fluxes: Accomplishments (Gamma Rays)

✓ Milky Way diffuse ✓ Milky Way sources

- X Extragalactic diffuse
- ✓ Extragalactic sources

HAWC (2021)

John Beacom, The Ohio State University

VHE Fluxes: Accomplishments (Neutrinos)

X Milky Way diffuse

X Milky Way sources

IceCube (2020)

- ✓ Extragalactic diffuse
- ∼ Extragalactic sources

IceCube, Fermi, everyone (2017)

VHE Fluxes: Hope

Cherekov Telescope Array precision gamma rays

IceCube-Gen2

John Beacom, The Ohio State University

VHE Diffuse: MMA

Crab Nebula to 1 PeV!

Many other sources!

VHE Diffuse: BSM

Neutrino Flavor Probes

Bustamante, Beacom, Winter (2015)

Neutrino Secret Interactions

Esteban, Pandey, Brdar, Beacom (2021)

John Beacom, The Ohio State University

Extreme-Energy Frontier

UHE range (EeV–ZeV)

John Beacom, The Ohio State University

HEP 2022, Virtual Hong Kong, January 2022

23

UHE (EeV–ZeV) Fluxes: Motivations

Nature's highest-energy accelerators? (Yes, ~ 10²⁰ eV and detectable across the universe)

Evidence of super high mass scales? (Not yet, but we have barely looked)

Probe new physics at extremes of energy and other variables? (Yes, especially if we know the astrophysics better)

UHE Fluxes: Orientation (GZK Process)

Greisen-Zatsepin-Kuzmin process $p + \gamma \rightarrow p + \pi^{0}$ $\rightarrow n + \pi^{+}$ $\pi^{0} \rightarrow 2\gamma$ $\pi^{+} \rightarrow e^{+} + 3\nu$

Highest-energy CRs all die *Neutrinos are their ghosts*

John Beacom, The Ohio State University

UHE Fluxes: Accomplishments

CR Spectrum: precise but mysterious

CR composition: precise but limited by theory

CR associations and anisotropies: claimed but unconvincing

Gamma and neutrino fluxes: only upper limits

UHE (Neutrino) Fluxes: Unsolved

Neutrinos probe *full line of sight*, are very sensitive to composition

John Beacom, The Ohio State University

UHE Fluxes: Hope

IceCube-Gen2 Radio

Radar Echo Telescope

And many other proposed experiments

UHE Fluxes: MMA

John Beacom, The Ohio State University

UHE Fluxes: BSM

Neutrino Cross Section

Bustamante and Connolly (2017)

HEP 2022, Virtual Hong Kong, January 2022

Neutrino Lorentz Violation

Concluding Remarks

John Beacom, The Ohio State University

What Are the Goals of High-Energy Physics?

Probe fundamental particles and forces

Explain emergent phenomena

Search for new physics

Key Messages

Multi-messenger observations are opening new vistas A golden opportunity for astronomy

Astrophysics has physical conditions far beyond the lab A golden opportunity for physics

Making the most of this requires working together A golden opportunity for human understanding

Please see Decadal Survey on Astronomy and Astrophysics 2020 (Astro2020)