Next generation vertex detectors based on bent CMOS sensors wafers

Magnus Mager (CERN) *on behalf of the ALICE collaboration* **IAS Program on High Energy Physics (HEP 2022) 13.01.2022**

Overview

‣1. Motivation

- large scale MAPS in HEP: ALICE ITS2
- proposal for **ITS3**
- performance predictions

- mechanical flexibility
- beam test results

- mechanics
- preparation of wafer-scale "super-ALPIDE"

‣2. Thin, bent sensors

- test beam results
- design of wafer-scale chips

‣3. Wafer-scale sensors

‣4. Next generation MAPS technology node: 65 nm

‣5. Outlook

1. Motivation

- ‣ Study of QGP in heavy-ion collisions at LHC
	- i.e. up to O(10k) particles to be tracked in a single event
- ▶ Reconstruction of charm and beauty hadrons
- ▶ Interest in low momentum (≤1 GeV/c) particle reconstruction

ALICE LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)

6 layers:

2 hybrid silicon pixel

 Λ

- 2 silicon drift
- 2 silicon strip

Inner-most layer:

 radial distance: 39 mm material: $X/X_0 = 1.14\%$ pitch: 50 \times 425 μ m² **rate capability:** 1 kHz

7 layers: all MAPS 10 m2, 24k chips, 12.5 Giga-Pixels

 \mathbf{Z}

Inner-most layer:

 radial distance: 23 mm material: $X/X_0 = 0.35\%$ pitch: 29 \times 27 μ m² **rate capability:** 100 kHz (Pb-Pb)

LS2

Inner Tracking System

Muon Forward Tracker

new detector

5 discs, double sided: based on same technology as ITS2

MFT

ITS2 overview

Outer Barrel (OB)

- **3 Inner Layers: 12+16+20 Staves 1 Module / Stave**
- **9 sensors per Module**
- **96 Modules to be produced (including one spare barrel)**

Inner Barrel (IB)

- **2 Middle Layers: 30+24 Staves 2**⨉**4 Modules / Stave 2 Outer Layers: 42+48 Staves 2**⨉**7 Modules / Stave**
- **2**⨉**7 sensors / Module (Middle and Outer Layers are equipped with the same Module**
- **1880 Modules to be produced (including spares)**

ITS2 overview

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 6

Good news: it is installed and commissioned in ALICE!

ITS2 overview

27 cm

ALICE

CALL TO BE DESIGN Report September
Layon September

Upgrade of the
Inner Tracking

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 6

Outer Barrel (OB)

PIXEL

A CERN for climate change

96 Modules to be produced

(including one spare barrel)

2007

(Middle and Outer Layers are

1880 Modules to be produced a second produced by the produced of the produced and

(including spares)

Type and Contact of the United States of the United States and Type Action

9 sensors

Cold Plate

Space Frame

Total:

 -24

 -12.5 GPixel -12.5

- 10 m2

 $Bean$

Good news: it is installed and commissioned in ALICE!

147 cm

il

LHC pilot beam results September 2021, 900 GeV proton collisions

LHC pilot beam results first, coarse results

Primary vertices YZ correlation, nContributors > 0

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 8

A new instrument has been taken into operation successfully!

ITS2 inner barrel

- ITS2 is expected to perform according to specifications or even better
- ‣ The Inner Barrel is ultra-light but rather packed → further improvements seem possible
- ‣ **Key questions: Can we get closer to the IP? Can we reduce the material further?**

ITS2: assembled three inner-most half-layers

Material budget a closer look

- Observations:
	- Si makes only **1/7th** of total material
	- **irregularities** due to support/cooling
- ▶ Removal of water cooling
	- **possible** if power consumption stays below 20 mW/cm2

- ▶ Removal of the circuit board (power+data) - **possible** if integrated on chip
- ‣ Removal of mechanical support
	- **benefit** from increased stiffness by rolling Si wafers

ITS3 the idea (1): make use of the flexible nature of thin silicon

ITS3 the idea (2): build wafer-scale sensors

- ▶ Chip size is traditionally limited by CMOS manufacturing ("reticle size")
	- typical sizes of few cm²
	- modules are tiled with chips connected to a flexible printed circuit board
- ▶ New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
	- actively used in industry
	- a 300 mm wafer can house a sensor to equip a full half-layer
- -

- requires dedicated sensor design

ITS3 detector concept

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 13

‣ Key ingredients:

- 300 mm wafer-scale sensors, fabricated using stitching
- thinned down to 20-40 μm $(0.02-0.04\% X_0)$, making them flexible
- bent to the target radii
- mechanically held in place by carbon foam ribs

‣ Key benefits:

- extremely low material budget: $0.02 - 0.04\% X_0$
	- (beampipe: 500 μm Be: 0.14% X0)
- homogeneous material distribution: negligible systematic error from material distribution

The whole detector will consist of six (!) sensors (current ITS IB: 432) – and barely anything else

ITS3 performance figures

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 14

pointing resolution

improvement of factor 2 over all momenta

tracking efficiency

large improvement for low transverse momenta

[ALICE-PUBLIC-2018-013]

Lambda-c (Λc)

schematic view of a Λ_c decay

- ‣ Analysis difficult due to large combinatorial background:
	- O(10k) charged particles in a central Pb-Pb collision
- ‣ Discrimination of background via:

- Particle identification (relatively low yield of protons and Kaons wrt. pions)
- **Topology: cut on DCA of single** tracks (before making the combinations) and decay vertex position (needs combinations)

p

π

Lambda-c (Λc) (2)

- Large improvement of S/B + significance due to better separation power of secondary decay vertex ($\Lambda_c \approx 60 \text{ }\mu\text{m}$)
- range Magnus Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 16

Flexibility of silicon

- ‣ **Monolithic** Active Pixel Sensors are quite flexible
	- already at thicknesses that are used for current detectors
- ‣ Bending force scales as (thickness)-3
	- large benefit from thinner sensors
- ‣ Breakage at smaller radii for thinner chips
	- again benefit from thinner sensors
- **‣Our target values are very feasible!**

- quite flexible
	- for current detectors

Flexibi

- \blacktriangleright **Monolith** quite flex
	- already for cur
- ‣ Bending force scales as (thickness)-3
	- large benefit from thinner sensors
- ‣ Breakage at smaller radii for thinner chips
	- again benefit from thinner sensors
- **‣Our target values are very feasible!**

- ‣ **Monolithic** Active Pixel Sensors are quite flexible
	- already at thicknesses that are used for current detectors
- ‣ Bending force scales as (thickness)-3
	- large benefit from thinner sensors
- ‣ Breakage at smaller radii for thinner chips
	- again benefit from thinner sensors
- **‣Our target values are very feasible!**

Flexibility of silicon

Bending ALPIDE exampl

tension wire

PERSONAL

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 22

foil

CONTRACTORS

50 μm-thick ALPIDE

$R = 18$ mm jig

Bent ALPIDEs

- ‣ A number of prototypes with bent ALPIDEs were produced
	- several different ways were explored (bending before bonding, or vice versa, different jigs)
	- "feeling" for handling thin silicon was gained
- ‣ By now, we have a full mock-up of the final ITS3, called "μITS3"
	- 6 ALPIDE chips, bent to the target radii of ITS3

Beam tests campaigns

- ‣ A series of beam tests was performed in 2020 and 2021:
	- Jun 2020 (DESY): first bent chip
	- Aug 2020 (DESY): bent chip on cylinder
	- Dec 2020 (DESY): bent chip at large radii
	- Apr 2021 (DESY): bent chips at all radii, carbon foam
	- Jul 2021 (SPS): μITS3, "₩"
	- Sep 2021 (DESY): MLR1, "₩", carbon foam

Beam tests campaigns

- A series of beam tests was performed in 2020 and 2021:
	- Jun 2020 (DESY): first bent
	- Aug 2020 (DESY): bent ch cylinder
	- Dec 2020 (DESY): bent radii
	- Apr 2021 (DESY): bent chip radii, carbon foam
	- Jul 2021 (SPS): μITS3, "₩"
	- Sep 2021 (DESY): MLR1, "₩", carbon foam

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 24

Intense and diverse programme throughout difficult times

Many thanks to DESY and CERN/SPS!

Beam tests 1st paper [doi:10.1016/j.nima.2021.166280](https://doi.org/10.1016/j.nima.2021.166280)

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale $(10^{-1}$ to 10^{-5}) to show fully efficient rows. Each data point corresponds to at least 8k tracks.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Available online 10 January 2022, 166280 In Press, Journal Pre-proof (?)

First demonstration of in-beam performance of bent Monolithic **Active Pixel Sensors**

ALICE ITS project¹

Show more \vee

∞ Share ■ Cite

https://doi.org/10.1016/j.nima.2021.166280

Get rights and content

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 25

Clearly proving that bent MAPS are working!

Beam tests

- ‣ Studies are now repeated for all ITS3 radii (18, 24, 30 mm)
	- no effect depending on the radius observed
- ‣ Results also match the published results - where the chip was bent along the other direction

₹

otal

efficiencies and spatial resolutions at different radii

Beam tests more data

- ‣ Very interesting geometries are becoming possible
- ‣ For instance, one can observe two crossings of the same particle

double-crossing grazing

. G

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 27

Beam tests μITS3

- ‣ ^μITS3, i.e. 6 ALPIDEs at ITS3 radii
	- two complete setups based on "gold" quality ALPIDE chips
	- one has a Cu target in the center: expect to see 120 GeV proton/pion–Cu collisions
- ‣ Several days of continuous data taking
	- detailed analysis ongoing

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 28

First "real" experiment, allows to study tracking/reconstruction

Beam tests μITS3

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 28

First "real" experiment, allows to study tracking/reconstruction

Beam tests "curiosity"

- ‣ ₩ (won): ALPIDE bent into a "W" shape
	-
-

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 29

This technology has a lot more to offer – time to be creative!

3. Wafer-scale sensors

Bending of wafer-scale sensors procedure

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 31

30 mm (layer 2) 50 μm dummy Silicon

Attachment of foam supports procedure

- ‣ Assembly process being developed
- ‣ Different options under study (incl. vacuum clamping)
- ‣ Currently working solution based on segmented mylar foil

Layer assembly

3-layer integration successful!

Carbon foam support structure

- ‣ Different foams were characterised for machinability and thermal properties
- **Baseline is** ERG DUOCEL_AR, which also features the largest radiation length

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 34

ALLCOMP_HD

 $0.45 - 0.68$ kg/dm³ 85-170 W/m·K

Carbon foam selection is complete

Layer assembly optimisation of glueing

Carbon foam wedge: **ERG Duocel** $[0.06 \text{ kg/dm}^3]$ Carbon fleece $[8g/m²]$

Glue: Araldite 2011

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 35

First assembly has shown glue penetration in the carbon foam by capillarity

Silicon

Helps to really put the material budget down as much as possible

Layer interconnection "super-ALPIDE"

- ‣ To study the bending **and** interconnection of **large** pieces of processed chips, "super-ALPIDE" is built
	- consists of 1 silicon piece cut from an ALPIDE wafer (9x2 dies, approx 1/2 of layer 0)

Layer interconnection (2) "super-ALPIDE"

- ‣ A bonding jig is being prepared
- ‣ the first row of ALPIDEs will be wire-bonded to an edge-FPC
	- just like the final detector,
- ‣ super-ALPIDE/L0 will be hold by an exoskeleton that:
	- mimics L1
	- and allows to interconnect all remaining ALPIDE dies

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 37

long wires for testing

edge bonds (like final ITS3)

Key R&D for combining electrical and mechanical prototypes

4. Next generation MAPS technology node: 65 nm

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 38

CERN

65 nm prototypes, MLR1

- ‣ First submission in TowerJazz 65nm
- scoped within CERN EP R&D WP1.2
- significant drive from ITS3
- + important contributions from outside (not ALICE) groups
- ‣ Contained several test chips
	- radiation test structures
	- pixel test structures
	- pixel matrices
	- analog building blocks (band gaps, LVDS drivers, etc)

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 39

~12 mm

~16 mm

Very versatile first submission, combining what was initially planned for 2 MPWs

65 nm prototypes, MLR1

 $~12$ mm

- ‣ Fully processed wafers are back by now
- Plenty of material ready for testing, literarily thousands of chips
- ▶ Produced with 4 different process splits
	- TCAD-guided optimisations in collaboration with foundry, comparable to TJ180nm

~16 mm

65 nm prototypes, MLR1 Digital Pixel Test Structure (DPTS)

- ▶ Most "aggressive" chip in MLR1
- \rightarrow 32 \times 32 pixels, 15 µm pitch
	- sizeable prototype, allows for "easy" test beam integration
- ‣ Asynchronous digital readout with ToT information
- ‣ Allows to verify:
	- sensor performance
	- front-end performance
	- basic digital building blocks
	- SEU cross-sections of registers

scintilator

3 ALPIDE 2 DPTS 3 ALPIDE

scintilator

XY-stage

First beam test XY-stage **Telescope with DPTS**

- ‣ Scintillator with 1mm hole can be used to trigger on narrow beam spot
- ‣ 6 precision linear stages with remote control allow to precisely align 2 DTPS and scintillators

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 42

3 ALPIDE (ref) 3 ALPIDE (ref) 2 DPTS (DUT) 1 PMT (trg) 1 PMT 1 PMT (trg) (anti)

30 mm

30 mm

30 mm

Scintillator (veto)

first few % of total statistics analysed

‣ Beam spot and trigger tuned to illuminate a small area

first few % of total statistics analysed

DPTSD wafer: 22 version: 1 split: 4 (opt.) $V_{\text{pwell}} = -1.2 \text{ V}$

- $V_{sub} = -1.2 V$ $I_{reset} = 10 \text{ pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 nA$ $I_{db} = 100 \text{ nA}$
- ‣ Beam spot and trigger tuned to illuminate a small area
- ‣ Looking at tracks without hit in the DPTS, a clear 100% shadow is seen

first few % of total statistics analysed

wafer: 22

- version: 1 split: 4 (opt.) $V_{\text{pwell}} = -1.2 \text{V}$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \text{ pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 nA$ $I_{db} = 100 \text{ nA}$ V_{casn} = 300 mV $V_{cash} = 250$ mV
- ‣ Beam spot and trigger tuned to illuminate a small area
- ‣ Looking at tracks without hit in the DPTS, a clear 100% shadow is seen
- The area matches precisely the DPTS
- ‣ **166/166** tracks in region of interest

- ‣ Beam spot and trigger tuned to illuminate a small area
- ‣ Looking at tracks without hit in the DPTS, a clear 100% shadow is seen
- The area matches precisely the DPTS
- ‣ **166/166** tracks in region of interest - similar for second chip **(162/162)**

first few % of total statistics analysed

DPTSE wafer: 22 $chip: 1$ version: X split: 4 (opt.) $V_{\text{pwell}} = -1.2 \text{ V}$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \text{ pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 nA$ $I_{db} = 100 \text{ nA}$ $V_{casn} = 300 \text{ mV}$

first few % of total statistics analysed

‣ Beam spot and trigger tuned to

illuminate a small area

- version: 1 split: 4 (opt.) $V_{\text{pwell}} = -1.2 \text{ V}$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \text{ pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 nA$ $I_{db} = 100 \text{ nA}$ $V_{casn} = 300 \text{ mV}$ $V_{cash} = 250$ mV
- ‣ Looking at tracks without hit in the DPTS, a clear 100% shadow is seen

- The area matches precisely the DPTS
- split: 4 (opt.) $V_{\text{pwell}} = -1.2 \text{ V}$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \text{ pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 nA$
- ‣ **166/166** tracks in region of interest
	- similar for second chip **(162/162)**
	- and even for both in coincidence **(83/83)**

‣ Beam spot and trigger tuned to

illuminate a small area

- version: 1 split: 4 (opt.) $V_{\text{pwell}} = -1.2 \text{ V}$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \text{ pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 nA$ $I_{db} = 100 \text{ nA}$ $V_{casn} = 300 \text{ mV}$ $V_{cash} = 250$ mV
- ‣ Looking at tracks without hit in the DPTS, a clear 100% shadow is seen

- The area matches precisely the DPTS
- version: X split: 4 (opt.) $V_{\text{pwell}} = -1.2 \text{ V}$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \text{ pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 nA$
- ‣ **166/166** tracks in region of interest
	- similar for second chip **(162/162)**
	- and even for both in coincidence **(83/83)**

Figure 10 Sensor *and* **front-end performance already from** *first* **65 nm prototype and** *first* **65 nm and** *first* **65 nm ***nototype*

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 44

Figure 10 Sensor *and* **front-end performance already from** *first* **65 nm prototype and** *first* **65 nm and** *first* **65 nm ***nototype*

Towards a wafer-scale sensor

‣ Next big milestone in sensor design: **stitching**

Towards a wafer-scale sensor ER1 **Design activity at full swing**

-
-
-
-
-

Summary

- a deeper sub-micron technology node (**65 nm** vs. 180 nm) allows for larger wafers (300 mm vs. 200 mm) with

- Monolithic CMOS sensors are successfully employed on large scale in HEP
	- latest instalment, **ALICE ITS2** (10 m2, TowerJazz 180 nm), **is taking data at LHC**
- The technology has still much more to offer:
	- at thicknesses of 50 μm the chips are **flexible**
	- the CMOS manufacturing process allows to produce **wafer-scale chips**
	- higher integration density
- ‣ **ALICE** proposes to build the next-generation Inner Tracking System, based on **³⁰⁰ mm-wafer-scale**, **20-40 μm-thin**, **bent MAPS**
	- large interest and active contribution of **many institutes** within and outside ALICE
	- physics scope continues to grow, idea is being picked up by other future experiments
- ‣ **R&D** is making rapid progress on all fronts, in particular:
	- **successful in-beam verification of bent MAPS**
	- **full-size mechanical mockups: build and characterised**
	- **65 nm validation: very high detection efficiency proven in beam**
- ‣ **Bent, ultra-light vertex detectors have become a reality!**

