Next generation vertex detectors based on bent CMOS sensors wafers

Magnus Mager (CERN) on behalf of the ALICE collaboration IAS Program on High Energy Physics (HEP 2022) 13.01.2022

Overview

► 1. Motivation

- large scale MAPS in HEP: ALICE ITS2
- proposal for **ITS3**
- performance predictions

2. Thin, bent sensors

- mechanical flexibility
- beam test results

► 3. Wafer-scale sensors

- mechanics
- preparation of wafer-scale "super-ALPIDE"

4. Next generation MAPS technology node: 65 nm

- test beam results
- design of wafer-scale chips

► 5. Outlook

1. Motivation

- Study of QGP in heavy-ion collisions at LHC
 - i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (\$1 GeV/c) particle reconstruction

ALICE LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)

Inner Tracking System

LS2

6 layers:

2 hybrid silicon pixel

- 2 silicon drift
- 2 silicon strip

Inner-most layer:

radial distance: 39 mm material: $X/X_0 = 1.14\%$ pitch: $50 \times 425 \ \mu m^2$ rate capability: 1 kHz

7 layers: all MAPS 10 m², 24k chips, 12.5 Giga-Pixels

Inner-most layer:

radial distance: 23 mm material: $X/X_0 = 0.35\%$ pitch: $29 \times 27 \ \mu m^2$ rate capability: 100 kHz (Pb-Pb)

Muon Forward Tracker

new detector

5 discs, double sided: based on same technology as ITS2

ITS2 overview

Inner Barrel (IB)

- 3 Inner Layers: 12+16+20 Staves **1 Module / Stave**
- **9** sensors per Module
- 96 Modules to be produced (including one spare barrel)

Outer Barrel (OB)

- 2 Middle Layers: 30+24 Staves 2×4 Modules / Stave 2 Outer Layers: 42+48 Staves 2×7 Modules / Stave
- 2×7 sensors / Module (Middle and Outer Layers are equipped with the same Module
- **1880 Modules to be produced** (including spares)

ITS2 overview

Good news: it is installed and commissioned in ALICE!

ITS2 overview

ERN-LHCC-2012-013 mber 12, 2012

ALICE

ALICE

Beam

Upgrade of the Inner Tracking Sy Conceptual

Good news: it is installed and composioned in ALICE!

PIXEL PERFECT

A CERN for climate change

LHC pilot beam results September 2021, 900 GeV proton collisions

LHC pilot beam results first, coarse results

Primary vertices YZ correlation, nContributors > 0

A new instrument has been taken into operation successfully!

ITS2 inner barrel

- ITS2 is expected to perform according to specifications or even better
- The Inner Barrel is ultra-light but rather packed \rightarrow further improvements seem possible
- Key questions: Can we get closer to the IP? Can we reduce the material further?

ITS2: assembled three inner-most half-layers

Material budget a closer look

- Observations:
 - Si makes only **1/7th** of total material
 - irregularities due to support/cooling
- Removal of water cooling
 - **possible** if power consumption stays below 20 mW/cm²

- Removal of the circuit board (power+data) **possible** if integrated on chip
- Removal of mechanical support
 - **benefit** from increased stiffness by rolling Si wafers

ITS3 the idea (1): make use of the flexible nature of thin silicon

ITS3 the idea (2): build wafer-scale sensors

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board

- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - a 300 mm wafer can house a sensor to equip a full half-layer

- requires dedicated sensor design

ITS3 detector concept

Beam pipe Inner/Outer Radius (mm)		16.0/16.5	
IB Layer Parameters	Layer 0	Layer 1	Lay
Radial position (mm)	18.0	24.0	30.
Length (sensitive area) (mm)		300	
Pseudo-rapidity coverage	±2.5	±2.3	±2.0
Active area (cm ²)	610	816	101
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280
Number of sensors per layer		2	
Pixel size (µm²)		O (10 x 10)	

Key ingredients:

- 300 mm wafer-scale sensors, fabricated using stitching
- thinned down to 20-40 µm (0.02-0.04% X₀), making them flexible
- bent to the target radii
- mechanically held in place by carbon foam ribs

Key benefits:

- extremely low material budget: 0.02-0.04% X₀
 - (beampipe: 500 µm Be: 0.14% X₀)
- homogeneous material distribution: negligible systematic error from material distribution

The whole detector will consist of six (!) sensors (current ITS IB: 432) – and barely anything else

ITS3 performance figures

pointing resolution

[ALICE-PUBLIC-2018-013]

improvement of factor 2 over all momenta

tracking efficiency

large improvement for low transverse momenta

Lambda-c (Λ_c)

schematic view of a Λ_c decay

- Analysis difficult due to large combinatorial background:
 - O(10k) charged particles in a central Pb-Pb collision
- Discrimination of background via:

D

- Particle identification (relatively low yield of protons and Kaons wrt. pions)
- **Topology:** cut on DCA of single tracks (before making the combinations) and decay vertex position (needs combinations)

Lambda-c (Λ_c) (2)

- better separation power of secondary decay vertex ($\Lambda_c \approx 60 \ \mu m$)
- range

Flexibility of silicon

- Monolithic Active Pixel Sensors are quite flexible
 - already at thicknesses that are used for current detectors
- Bending force scales as (thickness)-3
 - large benefit from thinner sensors
- Breakage at smaller radii for thinner chips
 - again benefit from thinner sensors
- Our target values are very feasible!

- quite flexible
 - for current detectors

Flexibi

- Monolith quite flex
 - already for cur
- Bending force scales as (thickness)-3
 - large benefit from thinner sensors
- Breakage at smaller radii for thinner chips
 - again benefit from thinner sensors
- Our target values are very feasible!

Flexibility of silicon

- Monolithic Active Pixel Sensors are quite flexible
 - already at thicknesses that are used for current detectors
- Bending force scales as (thickness)-3
 - large benefit from thinner sensors
- Breakage at smaller radii for thinner chips
 - again benefit from thinner sensors
- Our target values are very feasible!

Bending ALPIDE exampl

tension wire

1100

50 µm-thick ALPIDE

out out out out out

foi

R = 18 mm jig

Bent ALPIDEs

- A number of prototypes with bent ALPIDEs were produced
 - several different ways were explored (bending before bonding, or vice versa, different jigs)
 - "feeling" for handling thin silicon was gained
- By now, we have a full mock-up of the final ITS3, called "µITS3"
 - 6 ALPIDE chips, bent to the target radii of ITS3

Beam tests campaigns

- A series of beam tests was performed in 2020 and 2021:
 - Jun 2020 (DESY): first bent chip
 - Aug 2020 (DESY): bent chip on cylinder
 - Dec 2020 (DESY): bent chip at large radii
 - Apr 2021 (DESY): bent chips at all radii, carbon foam
 - Jul 2021 (SPS): µITS3, "₩"
 - Sep 2021 (DESY): MLR1, "₩", carbon foam

Beam tests campaigns

- A series of beam tests was performed in 2020 and 2021:
 - Jun 2020 (DESY): first beni Inter
 - Aug 2020 (DESY): bent ch cylinder
 - Dec 2020 (DESY): bent radii
 - Apr 2021 (DESY): bent chip radii, carbon foam
 - Jul 2021 (SPS): μITS3, "₩"
 - Sep 2021 (DESY): MLR1, "₩", carbon foam

Intense and diverse programme throughout difficult times

Many thanks to DESY and CERN/SPS!

Beam tests 1st paper <u>doi:10.1016/j.nima.2021.166280</u>

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale $(10^{-1} \text{ to } 10^{-5})$ to show fully efficient rows. Each data point corresponds to at least 8k tracks.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Available online 10 January 2022, 166280 In Press, Journal Pre-proof (?)

First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors

ALICE ITS project 1

Show more 🗸

😪 Share 🌖 Cite

https://doi.org/10.1016/j.nima.2021.166280

Get rights and content

Clearly proving that bent MAPS are working!

Beam tests

efficiencies and spatial resolutions at different radii

- Studies are now repeated for all ITS3 radii (18, 24, 30 mm)
 - no effect depending on the radius observed
- Results also match the published results where the chip was bent along the other direction

Beam tests more data

- Very interesting geometries are becoming possible
- For instance, one can observe two crossings of the same particle

double-crossing

grazing

Beam tests µITS3

- µITS3, i.e. 6 ALPIDEs at ITS3 radii
 - two complete setups based on "gold" quality **ALPIDE** chips
 - one has a Cu target in the center: expect to see 120 GeV proton/pion–Cu collisions
- Several days of continuous data taking
 - detailed analysis ongoing

First "real" experiment, allows to study tracking/reconstruction

Beam tests µITS3

First "real" experiment, allows to study tracking/reconstruction

Beam tests "curiosity"

- \blacktriangleright \forall (won): ALPIDE bent into a "W" shape

This technology has a lot more to offer – time to be creative!

3. Wafer-scale sensors

Bending of wafer-scale sensors procedure

30 mm (layer 2) 50 µm dummy Silicon

Attachment of foam supports procedure

- Assembly process being developed
- Different options under study (incl. vacuum clamping)
- Currently working solution based on segmented mylar foil

c) glueing of external layer

b) glueing of foam wedges

d) removal of remaining strips

Layer assembly

3-layer integration successful!

Carbon foam support structure

- Different foams were characterised for machinability and thermal properties
- Baseline is ERG DUOCEL_AR, which also features the largest radiation length

Carbon foam selection is complete

ALLCOMP_HD

0.45-0.68 kg/dm³ 85-170 W/m·K

Layer assembly optimisation of glueing

Carbon foam wedge: ERG Duocel [0.06 kg/dm³] Carbon fleece $[8g/m^2]$

Glue: Araldite 2011

First assembly has shown glue penetration in the carbon foam by capillarity

Silicon

Helps to really put the material budget down as much as possible

Layer interconnection "super-ALPIDE"

- To study the bending and interconnection of large pieces of processed chips, "super-ALPIDE" is built
 - consists of 1 silicon piece cut from an ALPIDE wafer (9x2 dies, approx 1/2 of layer 0)

Layer interconnection (2) "super-ALPIDE"

- A bonding jig is being prepared
- the first row of ALPIDEs will be wire-bonded to an edge-FPC
 - just like the final detector.
- super-ALPIDE/L0 will be hold by an exoskeleton that:
 - mimics L1
 - and allows to interconnect all remaining ALPIDE dies

long wires for testing

edge bonds (like final ITS3)

Key R&D for combining electrical and mechanical prototypes

4. Next generation MAPS technology node: 65 nm

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 38

CERN

65 nm prototypes, MLR1

First submission in TowerJazz 65nm

- scoped within CERN EP R&D WP1.2
- significant drive from ITS3
- + important contributions from outside (not ALICE) groups
- Contained several test chips
 - radiation test structures
 - pixel test structures
 - pixel matrices
 - analog building blocks (band gaps, LVDS drivers, etc)

Very versatile first submission, combining what was initially planned for 2 MPWs

65 nm prototypes, MLR1

~12 mm

16 mm

- Fully processed wafers are back by now
- Plenty of material ready for testing, literarily thousands of chips
- Produced with 4 different process splits
 - TCAD-guided optimisations in collaboration with foundry, comparable to TJ180nm

65 nm prototypes, MLR1 **Digital Pixel Test Structure (DPTS)**

- Most "aggressive" chip in MLR1
- > 32×32 pixels, 15 µm pitch
 - sizeable prototype, allows for "easy" test beam integration
- Asynchronous digital readout with ToT information
- Allows to verify:
 - sensor performance
 - front-end performance
 - basic digital building blocks
 - SEU cross-sections of registers

First beam test **Telescope with DPTS**

- Scintillator with 1mm hole can be used to trigger on narrow beam spot
- 6 precision linear stages with remote control allow to precisely align 2 DTPS and scintillators

scintilator

XY-stage

scintilator

3 ALPIDE 2 DPTS **3 ALPIDE**

(Y-stade

1 PMT 1 PMT 1 PMT **3 ALPIDE** 2 DPTS **3 ALPIDE** (DUT) (trg) (anti) (trg) (ref) (ref)

30 mm

30 mm

30 mm

Scintillator (veto)

first few % of total statistics analysed

Beam spot and trigger tuned to illuminate a small area

first few % of total statistics analysed

wafer: 22 version: 1 split: 4 (opt.)

- $V_{pwell} = -1.2 V$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \, \text{pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 \, \mathrm{nA}$ $I_{db} = 100 \, \text{nA}$ $V_{casn} = 300 \,\mathrm{mV}$ $V_{casb} = 250 \,\mathrm{mV}$
- Beam spot and trigger tuned to illuminate a small area
- Looking at tracks without hit in the DPTS, a clear 100% shadow is seen

first few % of total statistics analysed

wafer: 22

- version: 1 split: 4 (opt.) $V_{pwell} = -1.2 V$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \, pA$ $I_{bias} = 100 \,\mathrm{nA}$ $I_{biasn} = 10 \, \mathrm{nA}$ $I_{db} = 100 \, \text{nA}$ $V_{casn} = 300 \text{ mV}$ $V_{casb} = 250 \text{ mV}$
- Beam spot and trigger tuned to illuminate a small area
- Looking at tracks without hit in the DPTS, a clear 100% shadow is seen
- The area matches precisely the DPTS
- 166/166 tracks in region of interest

first few % of total statistics analysed

DPTS E wafer: 22 version: X split: 4 (opt.) $V_{pwell} = -1.2 V$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \, \text{pA}$ $I_{bias} = 100 \,\mathrm{nA}$ $I_{biasn} = 10 \, \mathrm{nA}$ $I_{db} = 100 \, \text{nA}$

- Beam spot and trigger tuned to illuminate a small area
- Looking at tracks without hit in the DPTS, a clear 100% shadow is seen
- The area matches precisely the DPTS
- 166/166 tracks in region of interest - similar for second chip (162/162)

first few % of total statistics analysed

- version: 1 split: 4 (opt.) $V_{pwell} = -1.2 V$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \, \text{pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 \, \mathrm{nA}$ $I_{db} = 100 \, \text{nA}$ $V_{casn} = 300 \,\mathrm{mV}$ $V_{casb} = 250 \,\mathrm{mV}$
- Beam spot and trigger tuned to illuminate a small area
- Looking at tracks without hit in the DPTS, a clear 100% shadow is seen
- The area matches precisely the DPTS
- split: 4 (opt.) $V_{pwell} = -1.2 V$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \, \text{pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 \, \mathrm{nA}$
- 166/166 tracks in region of interest
 - similar for second chip (162/162)
 - and even for both in coincidence (83/83)

- version: 1 split: 4 (opt.) $V_{pwell} = -1.2 V$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \, \text{pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 \, \mathrm{nA}$ $I_{db} = 100 \, \text{nA}$ $V_{casn} = 300 \,\mathrm{mV}$ $V_{casb} = 250 \,\mathrm{mV}$
- Looking at tracks without hit in the DPTS, a clear 100% shadow is seen

Beam spot and trigger tuned to

illuminate a small area

- The area matches precisely the DPTS
- version: X split: 4 (opt.) $V_{pwell} = -1.2 V$ $V_{sub} = -1.2 V$ $I_{reset} = 10 \, \text{pA}$ $I_{bias} = 100 \text{ nA}$ $I_{biasn} = 10 \, \mathrm{nA}$
- 166/166 tracks in region of interest
 - similar for second chip (162/162)
 - and even for both in coincidence (83/83)

Excellent sensor and front-end performance already from first 65 nm prototype

Excellent sensor and front-end performance already from first 65 nm prototype

Beam spot illuminate a	and trigger tuned to small area	
Looking at 1	tracks without hit in the	
)/(162+168) tracks:	ar 100% shadow is se	
%	atches precisely the	
opper-Pearson)	cks in region of interes	
- similar to	r second chip (162/162	
 and even for both in coincidenc (83/83) 		
	 Beam spot illuminate a Looking at f /(162+168) tracks: % pper-Pearson) SIMIIar TOI and even (83/83) 	

Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 | 44

en

2

e

Towards a wafer-scale sensor

Next big milestone in sensor design: stitching

			A REAL PROPERTY OF TAXABLE PROPERTY OF TAXABLE PROPERTY OF TAXABLE PROPERTY.
BO SHERE			
Nome Room			
In the second second			INCOME THE POST POST POST POST
80,000 80,000		■ 888668 = 888668 = 888668 = 86866 8 =	
tom			
	lanc		NAMES OF TAXABLE POST OF TAXAB
Dan			
ma			
		Magnus Mager (CERN) wafer-	scale, bent CMOS HEP2022 13.01.2022 45

Towards a wafer-scale sensor ER1

Summary

- Monolithic CMOS sensors are successfully employed on large scale in HEP
 - latest instalment, ALICE ITS2 (10 m², TowerJazz 180 nm), is taking data at LHC
- The technology has still much more to offer:
 - at thicknesses of 50 µm the chips are **flexible**
 - the CMOS manufacturing process allows to produce wafer-scale chips
 - higher integration density
- ALICE proposes to build the next-generation Inner Tracking System, based on 300 mm-wafer-scale, 20-40 µm-thin, bent MAPS
 - large interest and active contribution of many institutes within and outside ALICE
 - physics scope continues to grow, idea is being picked up by other future experiments
- **R&D** is making rapid progress on all fronts, in particular:
 - successful in-beam verification of bent MAPS
 - full-size mechanical mockups: build and characterised
 - 65 nm validation: very high detection efficiency proven in beam
- Bent, ultra-light vertex detectors have become a reality!

- a deeper sub-micron technology node (65 nm vs. 180 nm) allows for larger wafers (300 mm vs. 200 mm) with

