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}3 fields of R&D



1. Motivation
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ALICE
Detector and main goals
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‣ Study of QGP in heavy-ion collisions at LHC

- i.e. up to O(10k) particles to be tracked in 

a single event


‣ Reconstruction of charm and beauty 
hadrons


‣ Interest in low momentum (≲1 GeV/c) 
particle reconstruction



ALICE
LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)
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6 layers: 
  2 hybrid silicon pixel

  2 silicon drift

  2 silicon strip

Inner-most layer: 
  radial distance: 39 mm

  material: X/X0 = 1.14%

  pitch: 50 ⨉ 425 μm²

rate capability: 1 kHz

7 layers: 
  all MAPS

  10 m2, 24k chips, 12.5 Giga-Pixels


Inner-most layer: 
  radial distance: 23 mm

  material: X/X0 = 0.35%

  pitch: 29 ⨉ 27 μm²

rate capability: 100 kHz (Pb-Pb)

LS2

Inner Tracking System

Muon Forward Tracker

new detector 

5 discs, double sided: 
  based on same technology as ITS2 

ITS2

MFT



ITS2 overview
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Layout

Inner Barrel (IB)

Outer Barrel (OB)
27 cm

40 cm

147 cm

3 Inner Layers: 12+16+20 Staves 
  1 Module / Stave 

9 sensors per Module 

96 Modules to be produced 
(including one spare barrel) 

2 Middle Layers: 30+24 Staves 
  2⨉4 Modules / Stave 
2 Outer Layers: 42+48 Staves 
  2⨉7 Modules / Stave 

2⨉7 sensors / Module 
(Middle and Outer Layers are 
equipped with the same Module 
Type) 

1880 Modules to be produced 
(including spares)

Flexible PCB

9 sensors

Cold Plate

Space Frame

Total: 
- 24k chips 
- 10 m2 
- 12.5 GPixel 
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LHC pilot beam results
September 2021, 900 GeV proton collisions
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LHC pilot beam results
first, coarse results
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A new instrument has been taken into operation successfully!



ITS2 inner barrel

‣ ITS2 is expected to perform according to specifications or even better


‣ The Inner Barrel is ultra-light but rather packed → further improvements seem possible


‣ Key questions: Can we get closer to the IP? Can we reduce the material further?
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ITS2: assembled three inner-most half-layers

Layout

27 cm

40 cm

147 cm



Material budget
a closer look
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‣ Observations:

- Si makes only 1/7th of total material

- irregularities due to support/cooling


‣ Removal of water cooling

- possible if power consumption stays 

below 20 mW/cm2


‣ Removal of the circuit board (power+data)

- possible if integrated on chip


‣ Removal of mechanical support

- benefit from increased stiffness by 

rolling Si wafers



ITS3
the idea (1): make use of the flexible nature of thin silicon
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schematic cross-section of ALPIDE

Silicon Genesis: 20 micron thick wafer

Chipworks: 30µm-thick RF-SOI CMOS



ITS3
the idea (2): build wafer-scale sensors
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Courtesy: R. Turchetta, 
Rutherford Appleton Laboratory

14 c
m

27 cm

ALICE ITS2 
Inner barrel module

‣ Chip size is traditionally limited by 
CMOS manufacturing (“reticle size”)

- typical sizes of few cm2

- modules are tiled with chips 

connected to a flexible printed 
circuit board


‣ New option: stitching, i.e. aligned 
exposures of a reticle to produce 
larger circuits

- actively used in industry

- a 300 mm wafer can house a 

sensor to equip a full half-layer

- requires dedicated sensor design



ITS3 detector concept
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‣ Key ingredients:

- 300 mm wafer-scale sensors, fabricated 

using stitching

- thinned down to 20-40 μm 

(0.02-0.04% X0), making them flexible

- bent to the target radii

- mechanically held in place by carbon 

foam ribs


‣ Key benefits:

- extremely low material budget: 

0.02-0.04% X0 
(beampipe: 500 μm Be: 0.14% X0)


- homogeneous material distribution: 
negligible systematic error from material 
distribution

open-cell carbon 

foam spacers

truly cylindrical 
detection layers

The whole detector will consist of six (!) sensors (current ITS IB: 432) – and barely anything else



ITS3 performance figures
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pointing resolution

improvement of factor 2 over all momenta

tracking efficiency

large improvement for low transverse momenta
[ALICE-PUBLIC-2018-013]



Lambda-c (Λc)

‣ Analysis difficult due to large 
combinatorial background:

- O(10k) charged particles in a 

central Pb-Pb collision

‣ Discrimination of background via:


- Particle identification (relatively 
low yield of protons and Kaons 
wrt. pions)


- Topology: cut on DCA of single 
tracks (before making the 
combinations) and decay vertex 
position (needs combinations) 
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p

K
π

Λc

DCA(p) 

“distance of closest 

approach”

ct(Λ
c) =

 O(60
µm)

schematic view of a Λc decay



Lambda-c (Λc) (2)

‣ Large improvement of S/B + significance due to 
better separation power of secondary decay 
vertex (Λc ≈ 60 µm)


‣ Allows for precision measurements over a wide pT 
range

16Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 |

2 4 6 8 10 12 14 16 18 20
 (GeV/c)

T
p

0

20

40

60

80

100

120

140

160

180

Si
gn

ifi
ca

nc
e

ITS3
ITS2

ALICE Upgrade
+p

- pK® cL
 = 5.02 TeVNNsPb 0-10%, -Pb

-1 = 10 nbintL

2 4 6 8 10 12 14 16 18 20
 (GeV/c)

T
p

4-10

3-10

2-10

1-10

1

Si
gn

al
 o

ve
r B

ac
kg

ro
un

d

ITS3
ITS2

ALICE Upgrade
+p

- pK® cL
 = 5.02 TeVNNsPb 0-10%, -Pb

Λc yield S/B Significance

ITS3 / ITS2 10 4

[ALICE-PUBLIC-2018-013]



2. Thin, bent sensors
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[“Standard”, 50 μm thick ALPIDEs as used for the ITS2 IB, are already quite flexible!]



97 μm (/8)
50 μm (x1)
40 μm (x(5/4)3)
30 μm (x(5/3)3)

L = 12 mm

Flexibility of silicon

‣ Monolithic Active Pixel Sensors are 
quite flexible

- already at thicknesses that are used 

for current detectors


‣ Bending force scales as (thickness)-3

- large benefit from thinner sensors


‣ Breakage at smaller radii for thinner 
chips

- again benefit from thinner sensors


‣Our target values are very feasible!

18Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 |

There is quite some margin already at 50 μm!
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There is quite some margin already at 50 μm!
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There is quite some margin already at 50 μm!



Bending ALPIDE
example
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50 μm-thick ALPIDE

R = 18 mm jig

tension wire
foil



Bent ALPIDEs

‣ A number of prototypes with bent ALPIDEs were 
produced

- several different ways were explored  

(bending before bonding, or vice versa, different jigs)

- “feeling” for handling thin silicon was gained


‣ By now, we have a full mock-up of the final ITS3, 
called “μITS3”

- 6 ALPIDE chips, bent to the target radii of ITS3
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Beam tests
campaigns

‣ A series of beam tests was performed in 
2020 and 2021:

- Jun 2020 (DESY): first bent chip

- Aug 2020 (DESY): bent chip on 

cylinder

- Dec 2020 (DESY): bent chip at large 

radii

- Apr 2021 (DESY): bent chips at all 

radii, carbon foam

- Jul 2021 (SPS): μITS3, “￦”

- Sep 2021 (DESY): MLR1, “￦”, carbon 

foam
24Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 |
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Intense and diverse 
programme throughout difficult 

times 

Many thanks to 
DESY and 

CERN/SPS!



Beam tests
1st paper doi:10.1016/j.nima.2021.166280
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Clearly proving that bent MAPS are working!

https://doi.org/10.1016/j.nima.2021.166280


Beam tests
efficiencies and spatial resolutions at different radii

‣ Studies are now repeated for all ITS3 radii 
(18, 24, 30 mm)

- no effect depending on the radius observed


‣ Results also match the published results

- where the chip was bent along the other direction 
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Beam tests
more data

‣ Very interesting geometries are 
becoming possible


‣ For instance, one can observe two 
crossings of the same particle
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hitmap

double-crossing grazing

“ordinary”
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Beam tests
μITS3
‣ μITS3, i.e. 6 ALPIDEs at ITS3 radii


- two complete setups based on “gold” quality 
ALPIDE chips


- one has a Cu target in the center: expect to see 
120 GeV proton/pion–Cu collisions


‣ Several days of continuous data taking

- detailed analysis ongoing

28Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 |

DUT

schematic view

First “real” experiment, allows to study tracking/reconstruction 
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DUT

schematic view

First “real” experiment, allows to study tracking/reconstruction 

[few hand-drawn track lines to guide the eye]

– work in progress –

Example event



4 crossings!

single event

Beam tests
“curiosity”
‣ ￦ (won): ALPIDE bent into a “W” shape


- bending radii of O(2cm)


‣ Also “just works”, demonstrating what kind of 
detectors become possible now

29Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 |

correlation of flat and W chip

This technology has a lot more to offer – time to be creative!



3. Wafer-scale sensors
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Bending of wafer-scale sensors
procedure
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30 mm (layer 2)
50 μm dummy Silicon



Attachment of foam supports
procedure

‣ Assembly process 
being developed


‣ Different options 
under study (incl. 
vacuum clamping)


‣ Currently working 
solution based on 
segmented mylar foil

32Magnus Mager (CERN) | wafer-scale, bent CMOS | HEP2022 | 13.01.2022 |

a) cut of every second mylar strip b) glueing of foam wedges

d) removal of remaining stripsc) glueing of external layer



Layer assembly
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Layer 2 Layers 2+1 Layers 2+1+0

3-layer integration successful!



Carbon foam
support structure
‣ Different foams were characterised for 

machinability and thermal properties


‣ Baseline is  
ERG DUOCEL_AR, 
which also features the largest radiation 
length
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– work in progress –

Carbon foam selection is complete



Layer assembly
optimisation of glueing
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Supporting base

InterfaceSilicon

ERG Duocel

Helps to really put the material budget down as much as possible



6 cm

14 c
m

2⨉9 ALPIDEs 

30, 40, 50 μm
 thick

Layer interconnection
“super-ALPIDE”

‣ To study the bending and interconnection of large 
pieces of processed chips, “super-ALPIDE” is built

- consists of 1 silicon piece cut from an ALPIDE 

wafer (9x2 dies, approx 1/2 of layer 0)
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Layer interconnection (2)
“super-ALPIDE”

‣ A bonding jig is being 
prepared


‣ the first row of ALPIDEs will 
be wire-bonded to an edge-
FPC

- just like the final detector


‣ super-ALPIDE/L0 will be hold 
by an exoskeleton that:

- mimics L1

- and allows to interconnect 

all remaining ALPIDE dies
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long wires for testing

edge bonds (like final ITS3)

Key R&D for combining electrical and mechanical prototypes



4. Next generation MAPS technology node: 65 nm
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65 nm prototypes, MLR1

‣ First submission in TowerJazz 65nm

- scoped within CERN EP R&D WP1.2

- significant drive from ITS3

- + important contributions from outside 

(not ALICE) groups


‣ Contained several test chips

- radiation test structures

- pixel test structures

- pixel matrices

- analog building blocks (band gaps, 

LVDS drivers, etc)
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~12 mm

~1
6 

m
m

Very versatile first submission, combining what was initially planned for 2 MPWs



65 nm prototypes, MLR1
‣ Fully processed wafers are back by now


‣ Plenty of material ready for testing, literarily 
thousands of chips


‣ Produced with 4 different process splits

- TCAD-guided optimisations in collaboration 

with foundry, comparable to TJ180nm  
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~12 mm

~1
6 

m
m 1/4 of a 300 mm MLR1 wafer 

(50 μm-thick, diced)



65 nm prototypes, MLR1
Digital Pixel Test Structure (DPTS)

‣ Most “aggressive” chip in MLR1


‣ 32 ⨉ 32 pixels, 15 μm pitch

- sizeable prototype, allows for “easy” test 

beam integration


‣ Asynchronous digital readout with ToT 
information


‣ Allows to verify:

- sensor performance

- front-end performance

- basic digital building blocks

- SEU cross-sections of registers
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3 ALPIDE3 ALPIDE 2 DPTS

scintilator
scintilator

scintilator 
with 1mm hole

XY-stage

XY-stage

XY-stageFirst beam test
Telescope with DPTS

‣ Scintillator with 1mm hole can 
be used to trigger on narrow 
beam spot


‣ 6 precision linear stages with 
remote control allow to precisely 
align 2 DTPS and scintillators
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3 ALPIDE 
(ref)

3 ALPIDE 
(ref)

2 DPTS 
(DUT)

1 PMT 
(trg)

1 PMT 
(trg)

1 PMT 
(anti)



Schematic setup
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Schematic setup
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ALPIDE (reference planes)

30 mm

15 m
m

1.5x1.5 mm

(active: 0.48x0.48 mm)

DPTS

Scintillator (veto)

D=1mm



DPTS beam test results

‣ Beam spot and trigger tuned to 
illuminate a small area

44

first few % of total statistics analysed
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Excellent sensor and front-end performance already from first 65 nm prototype

Efficiency with (162+168)/(162+168) tracks: 

 

(95% confidence, Clopper-Pearson)

100+0
−1 %



Towards a wafer-scale sensor

‣ Next big milestone in sensor design: stitching
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… or how to make 
this part 
become 

a single “chip”?



Towards a wafer-scale sensor
ER1 ‣ Design activity at full swing


- building blocks are defined and work is distributed

- based on very encouraging, silicon-proven, feedback from MLR1

- floorplan under discussion with foundry


‣ Critical point: design for yield


‣ Production and test in this year (2022)
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Last crucial ingredient for the TDR



Summary
‣ Monolithic CMOS sensors are successfully employed on large scale in HEP


- latest instalment, ALICE ITS2 (10 m2, TowerJazz 180 nm), is taking data at LHC


‣ The technology has still much more to offer:

- at thicknesses of 50 μm the chips are flexible

- the CMOS manufacturing process allows to produce wafer-scale chips 
- a deeper sub-micron technology node (65 nm vs. 180 nm) allows for larger wafers (300 mm vs. 200 mm) with 

higher integration density


‣ ALICE proposes to build the next-generation Inner Tracking System, based on 300 mm-wafer-scale, 
20-40 μm-thin, bent MAPS 
- large interest and active contribution of many institutes within and outside ALICE

- physics scope continues to grow, idea is being picked up by other future experiments


‣ R&D is making rapid progress on all fronts, in particular:

- successful in-beam verification of bent MAPS 
- full-size mechanical mockups: build and characterised  
- 65 nm validation: very high detection efficiency proven in beam


‣ Bent, ultra-light vertex detectors have become a reality!
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!ank you!


