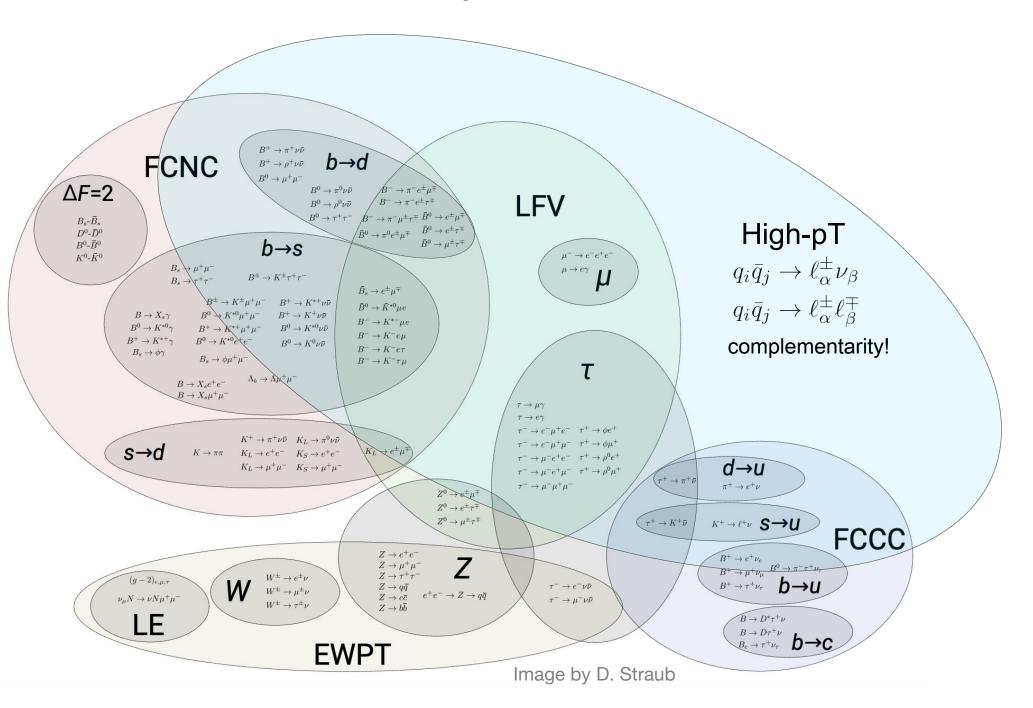
Semi-leptonics at high-Pt

EFT WG: Flavor assumptions

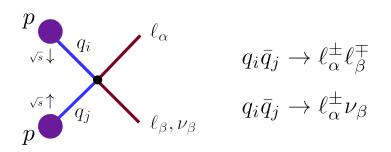
Darius A. Faroughy
Felix Wilsch

Semileptonics at the LHC



Semi-leptonic operators at high-pT

Drell-Yan processes



$$\mathcal{L}_{ ext{eff}} \supset \sum_{I} \sum_{ij,lphaeta} \left(rac{C_{I}^{ijlphaeta}}{v^{2}}
ight) \, \mathcal{O}_{I}^{ijlphaeta}$$

Eff. coeff.	Operator	SMEFT
$C_{V_{LL}}^{ijlphaeta}$	$\left(\overline{q}_{Li}\gamma_{\mu}q_{Lj}\right)\left(\overline{\ell}_{Llpha}\gamma^{\mu}\ell_{Leta}\right)$	$\mathcal{O}_{lq}^{(1)},\mathcal{O}_{lq}^{(3)}$
$C_{V_{RR}}^{ijlphaeta}$	$\left(\overline{q}_{Ri}\gamma_{\mu}q_{Rj} ight)\left(ar{\ell}_{Rlpha}\gamma^{\mu}\ell_{Reta} ight)$	$\mathcal{O}_{ed},\mathcal{O}_{eu}$
$C_{V_{LR}}^{ijlphaeta}$	$ig(\overline{q}_{Li}\gamma_{\mu}q_{Lj}ig)ig(ar{\ell}_{Rlpha}\gamma^{\mu}\ell_{Reta}ig)$	\mathcal{O}_{qe}
$C_{V_{RL}}^{ijlphaeta}$	$\left(\overline{q}_{Ri}\gamma_{\mu}q_{Rj} ight)\left(ar{\ell}_{Llpha}\gamma^{\mu}\ell_{Leta} ight)$	$\mathcal{O}_{lu},\mathcal{O}_{ld}$
$C_{S_R}^{ijlphaeta}$	$(\overline{q}_{Ri}q_{Lj})(\overline{\ell}_{Llpha}\ell_{Reta})+\mathrm{h.c.}$	\mathcal{O}_{ledq}
$C_{S_L}^{ijlphaeta}$	$(\overline{q}_{Li}q_{Rj})(\overline{\ell}_{L\alpha}\ell_{R\beta}) + \mathrm{h.c.}$	$\mathcal{O}_{lequ}^{(1)}$
$C_T^{ijlphaeta}$	$\left[(\overline{q}_{Li}\sigma_{\mu\nu}q_{Rj})(\overline{\ell}_{L\alpha}\sigma^{\mu\nu}\ell_{R\beta}) + \text{h.c.} \right]$	$\mathcal{O}_{leau}^{(3)}$

 $\tau \equiv \frac{\hat{s}}{s} = \frac{m_{\ell_{\alpha}\ell_{\beta}}^2}{s}$

• Two sources of flavor behind high-energy proton-proton collisions:

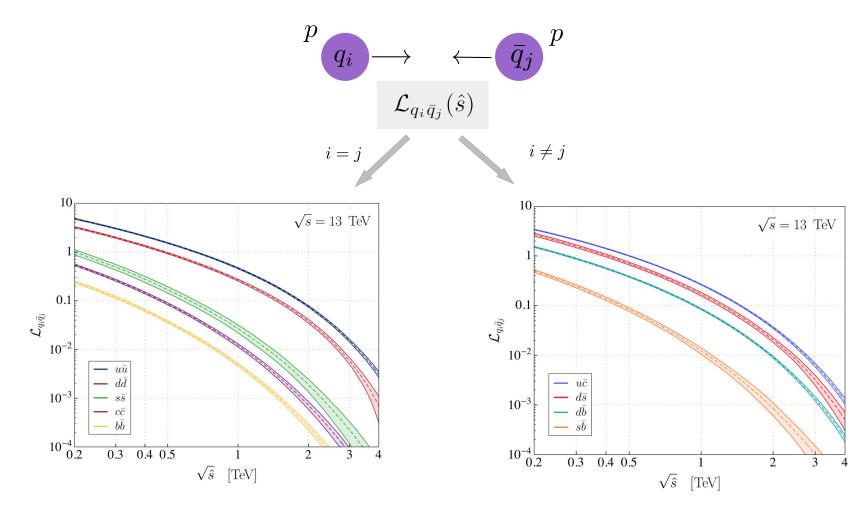
$$\sigma(pp \to \ell^{\alpha}\ell^{\beta}) = \mathcal{L} \otimes \hat{\sigma}^{\alpha\beta} \equiv \sum_{ij} \int \frac{\mathrm{d}\tau}{\tau} \, \mathcal{L}_{q_i \bar{q}_j}(\tau) \, \hat{\sigma}^{ij\alpha\beta}(\tau)$$

parton-parton Luminosities

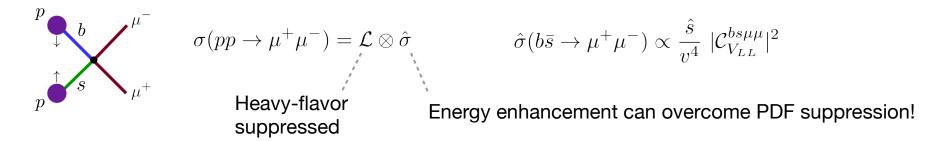
$$\mathcal{L}_{q_i\bar{q}_j}(\tau) = \tau \int_{\tau}^{1} \frac{\mathrm{d}x}{x} \left[f_{q_i}(x,\mu_F) f_{\bar{q}_j}(\tau/x,\mu_F) + (q_i \leftrightarrow \bar{q}_j) \right] \qquad \qquad \hat{\sigma}^{ij\alpha\beta} \equiv \hat{\sigma} \big(q_i \bar{q}_j \to \ell_\alpha \ell_\beta \big) \propto \sum_{IJ} C_I^{ij\alpha\beta} C_J^{ij\alpha\beta^*} M_{IJ}$$

$$\text{'PDFs'}$$

$$\mathcal{G} = \mathcal{G}_q \otimes \mathcal{G}_\ell$$



• example:



Signature: deviations in the tail of the dilepton invariant mass distribution

Which should be the 'baseline'?

• Proposed baseline: $U(2)_q \otimes U(2)_u \otimes U(3)_d \otimes U(3)_\ell \otimes U(3)_e$

$$SU(3)_{\ell,e}$$

$$\begin{cases} q\bar{q} \to e^+e^- \\ q\bar{q} \to \mu^+\mu^- \\ q\bar{q} \to \tau^+\tau^- \end{cases} \to \text{All Drell-Yan tails have same behavior...}$$
 we are wasting good quality LHC data!

At LHC we can measure **lepton flavor** VERY well! ightharpoonup motivates for smaller $\mathcal{G}_{\ell,e}$ symmetry group

- Alternate baselines more interesting for high-pT flavor:
 - $U(2)^5$ (connexion to flavor anomalies)
 - $U(2)^5 \otimes U(1)_{b_R} \otimes U(1)_{\tau_R}$

No tensor/scalar (chirality flipping semi-leptonic ops)

Only vectors \rightarrow simple EFT truncation at $\ \Lambda^{-2}$ could probe semi-lep operators

Comments about flavor breaking spurions?

	$U(2)^5 \otimes U(1)_b \otimes U(1)_{ au}$ [terms summed up to different orders]															
									$\int \mathcal{O}(V^2,\Delta^1,$		$O(\Delta^1 V^1,$		$\int \mathcal{O}(V^3, \Delta^1 V^1,$			
Operators	Exa	act	$\mathcal{O}(X^2)$		$\mathcal{O}(V^1,X^2)$		$\mathcal{O}(V^2, V^1 X^2)$		$\mathcal{O}(\Delta^{1})$	$^{1},V^{1}X^{2})$	V^1X^2		$V^2X^2, \Delta^1X^1)$		$V^2X^2, \Delta^1X^1)$	
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	1	1	3	3	4	4	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	3	3	8	8	11	11	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	14	_	15	1	19	5	23	5	19	5	23	5	25	7	25	7
$(\bar{L}L)(\bar{L}L)$	23	_	23	-	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	_	29	_	29	_	29	_	29	_	29	_	38	9	38	9
$(\bar{L}L)(\bar{R}R)$	32	_	32	_	48	16	64	16	50	18	66	18	77	29	77	29
$(\bar{L}R)(\bar{R}L)$	_	_	1	1	1	1	3	3	3	3	3	3	6	6	6	6
$(\bar{L}R)(\bar{L}R)$	_	_	4	4	4	4	12	12	18	18	18	18	38	38	38	38
total:	111	10	124	23	165	64	229	88	201	100	248	107	304	163	311	170

$$U(2)^5 \otimes U(1)_b \otimes U(1)_{\tau} \longrightarrow U(2)^5$$

breaking by **X** (bottom/tau Yukawas)

• can in principle be probed by $b\bar{b}\to \tau^+\tau^-$ diff. distirbutions (vector vs scalar/tensor ops) but effects are obviously way too small... other Higgs sector observables could help.

$$U(2)^5$$
 breaking by $V_\ell, V_q \sim {f 2}$

- Including these leading symmetry breaking spurions will increase # operators by factor of ~2
 - but we gain new observables: e.g. LFV $\,qar{q}
 ightarrow\muar{ au},\cdots$
 - Generically, to probe the spurions that break $\,U(2)^5\,$ $\,$ EFT truncation $\,\Lambda^{-4}$

are dim = 8 effects are relevant?

