A sensitivity study of VBS and diboson WW to dimension-6 EFT operators at the LHC

Giacomo Boldrini ${ }^{1}$

${ }^{1}$ University and INFN of Milano - Bicocca
LHC EFT Area 2 meeting - https://indico.cern.ch/event/1096488/

Introduction

 measurements to constrain dimension-6 EFT operators and their interplay with diboson $\mathrm{W}^{+} \mathrm{W}^{-}$:
Index:

```
https://arxiv.org/pdf/2108.03199v2.pdf
```

- Introduction
- The processes
- Analysis strategy
- Results

A sensitivity study of VBS and diboson WW to dimension-6 EFT operators at the LHC
R. Bellan, ${ }^{d, e}$ G. Boldrini, ${ }^{a, b}$ D. Brambilla, ${ }^{a}$ I. Brivio, ${ }^{c}$ R. Brusa, ${ }^{a}$ F. Cetorelli, ${ }^{a, b}$ M. Chiusi, ${ }^{a}$ R. Covarelli, ${ }^{d, e}$ V. Del Tatto, ${ }^{h}$ P. Govoni, ${ }^{a, b}$ A. Massironi, ${ }^{b}$ L. Olivi, ${ }^{d}$ G. Ortona, ${ }^{d}$ G. Pizzati, ${ }^{a}$ A. Tarabini, ${ }^{g}$ A. Vagnerini, ${ }^{d, e}$ E. Vernazza, ${ }^{a}$ J. Xiao ${ }^{a, f}$

Theory Introduction

SM tested with unprecedented accuracy with LHC Run II statistics. Recent evidence for tensions...
There are known SM shortcomings \rightarrow the SM is thought to be a low level manifestation of a UV-complete theory at large scale.

EFT interpretation can shed light on NP

SMEFT

- Built upon SM fields
- $S U(3)_{C} \times S U(2)_{L} \times$ $U(1)_{Y}$ invariant
- Higgs-like in SU(2) doublet. Linear realization of EWSB
- Describe ~all UV-complete theories

Neglecting B/L violating dim-5 and dim-7 operators
$\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{S M}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}^{(6)}+\frac{c_{i}}{\Lambda^{4}} O_{i}^{(8)}+\ldots$
Λ unknown NP energy scale

Experimental Overview

VBS

- $L \sim 137 \mathrm{fb}^{-1}$ allows new measurements.
- Statistically dominated.
- BSM in aQGC or EFT dim-8.
- dim-6 can be important (and should be considered)
[arXiv:1809.04189]

Diboson

- Well known processes.
- High cross-section, syst. dominated.
- BSM in aTGC or EFT dim-6.
- Limited operators studied.

The case for a LHE study

The case for a LHE study:

- LHC VBS results usually interpreted in terms of dim-8 operators. But dim-6 should be considered
- Global EFT fit will be needed, combination is key: top + Higgs + EW + non-LHC (LEP, Tevatron,...), What's the sensitivity reach / interplay of VBS and WW?
- Ranking of common observables based on the operator-by-operator sensitivity
- A study of the impact of Λ^{-4} dim- 6 terms
- Analysis of the EFT contributions from the major background
- First exercise with a new statistical model for EFT fits and combinations within CMS.

SMEFT Monte Carlo Generations

15 dim-6 SMEFT operators with various field content from Warsaw basis [arXiv:1008.4884v3].
$U(3)^{5}$ flavour symmetry, $\left\{m_{w}, m_{z}, G_{F}\right\}$ input scheme, CP-even, $\Lambda=1 \mathrm{TeV}$.

Generated at LO with SMEFTsim [arXiv: 2012.11343] interfaced with MadGraph5_aMC@NLO (2.6.5).
Insertion of one operator per diagram in production or decay.

$$
N \propto \overbrace{\left|\mathcal{A}_{\mathrm{SM}}\right|^{2}}^{\mathrm{SM}}+\sum_{\alpha} \frac{\boldsymbol{c}_{\alpha}}{\Lambda^{2}} \cdot \underbrace{2 \operatorname{Re}\left(\mathcal{A}_{\mathrm{SM}} \mathcal{A}_{Q_{\alpha}}^{\dagger}\right)}_{\text {Lin }}+\frac{c_{\alpha}^{2}}{\Lambda^{4}} \cdot \overbrace{\left|\mathcal{A}_{Q_{\alpha}}\right|^{2}}^{\text {Quad }}+\sum_{\alpha, \beta} \frac{c_{\alpha} \boldsymbol{c}_{\beta}}{\Lambda^{4}} \cdot \underbrace{\operatorname{Re}\left(\mathcal{A}_{Q_{\alpha}} \mathcal{A}_{Q_{\beta}}^{\dagger}\right)}_{\text {Mix }}
$$

Two complementary approaches employed:

- Generate single components, $c_{\alpha}=1: n(n+3) / 2=135 \forall$ processes
- Generate events once, LO MG re-weight to different Wilson coeff. Algebra to extract components.

Amplitude decomposition

While the advantage of amplitude decomposition while generating EFT contributions at fixed orders in E / Λ is a better PS sampling, it has the disadvantage that the nominal value for $\mathbf{N} \propto \| \mathcal{A}_{\text {SM }}+\left.\mathcal{A}_{6}\right|^{2}$ can be negative due to the fact that each contribution is evaluated on a different PS.
\rightarrow The reweighting method (LO $w^{N}=w^{O}\left|\mathcal{M}_{h}^{N}\right|^{2} /\left|\mathcal{M}_{h}^{O}\right|^{2}$) computes weights for new hypothesis fixing the PS and guarantees positive definiteness.. Handy when working with pdfs.
Closure tests performed between standalone components and reweighted one, agreement within statistical error.

Technical Details

Processes of interest

Processes already investigated (or under development) by LHC collaborations. Where appropriate, background contributions ($\alpha_{s}^{2} \alpha_{E W}^{4}$) generated for both SM and EFT. Fully-leptonic and semi-leptonic final states investigated. LHC-like selections performed (slides $\mathbf{2 3 , 2 4 , 2 5}$)

- Same-sign WW: p p $>\mathrm{e}^{+} \nu_{\mathrm{e}} \mu^{+} \nu_{\mu} \mathrm{j} \mathrm{j}$
- Opposite-sign WW (QCD): pp > $\mathrm{e}^{+} \nu_{\mathrm{e}} \mu^{-} \overline{\nu_{\mu}} \mathrm{j} \mathrm{j}$
- WZ +2 j(QCD): $\mathrm{pp}>\mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \nu_{\mu} \mathrm{j} \mathrm{j}$
- ZZ+2j(QCD): $\mathrm{p} p>\mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}$
- ZV+2j(QCD): pp > $\mathrm{zw}^{+}\left(\mathrm{w}^{-}, \mathrm{z}\right)>$
$\mathrm{l}^{+} \mathrm{l}^{-} \mathrm{j} j \mathrm{jj}$
- WW: pp > $\mathrm{e}^{+} \nu_{\mathrm{e}} \mu^{-} \overline{\nu_{\mu}}$

An integrated luminosity of $\mathbf{1 0 0} \mathbf{f b}^{\mathbf{- 1}}$ is assumed. Projection of constraints on

slide 30
G. Boldrini, 31/01/2022, LHC EFT Area 2 meeting

Processes of interest - EFT sensitivity

Summary of the sensitivity of each process to the operator subset. Empty cells = impossible to insert EFT vertices in diagrams.

proc / op	$Q_{H D}$	$Q_{H D}$	$Q_{H W B}$	$Q_{H q}^{(1)}$	$Q_{H q}^{(3)}$	$Q_{H W}$	Q_{W}	$Q_{H l}^{(1)}$	$Q_{H l}^{(3)}$	$Q_{I l}^{(1)}$	$Q_{q q}^{(3)}$	$Q_{q q}^{(3,1)}$	$Q_{q q}^{(1,1)}$	$Q_{G q}^{(1)}$	$Q_{I l}$
SSWW-EW	\checkmark	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(\checkmark)						
OSWW-EW	\checkmark	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(\checkmark)						
WZ-EW	\checkmark	(\checkmark)													
ZZ-EW	\checkmark	(\checkmark)													
ZV-EW	\checkmark														
wW	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	(\checkmark)	\checkmark	\checkmark					
ZV-QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					
OSWW-QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					
WZ-QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					(\checkmark)
ZZ-QCD	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark					(\checkmark)

Introduction to shape analysis

$$
N \propto S M^{E W K}+S M^{Q C D}+\frac{c_{\alpha}}{\Lambda^{2}}\left(\operatorname{Lin}^{E W K}+\operatorname{Lin}^{Q C D}\right)+\frac{c_{\alpha}^{2}}{\Lambda^{4}}\left(\text { Quad }^{E W K}+Q u a d^{Q C D}\right)
$$

- When EFT only in EWK:
 $\operatorname{Lin}^{Q C D}=$ Quad $^{Q C D}=0, S M^{Q C D}$ acts as a fixed background contribution
- Overflow counts in last bin
- Conservative binning for each observable
- At least one SM count in each bin
Solid colored lines represent SM+EFT for a given value of $c_{\alpha}(\Lambda=1 \mathrm{TeV})$. Ratio plot of BSM/SM to inspect for sensitivity in bulk or tail. Trend inversion happen when c_{α}^{2} Quad $>c_{\alpha}$ Lin negative interference

Fit procedure

Shape analysis on distributions of continuous observables

$$
\mathcal{L}(\mathbf{c})=\underbrace{\prod_{\text {bin }=k} \frac{\left(N_{k}(\mathbf{c})\right)^{n_{k}}}{n_{k}!} e^{-N_{k}(\mathbf{c})}}_{\text {Poisson }} \times \overbrace{\prod_{\text {syst }=j} \pi(\tilde{\theta} \mid \theta)}^{\text {Nuisances }}
$$

- $N(\mathbf{c})=S M+\sum_{c_{\alpha}} \boldsymbol{c}_{\alpha} \cdot \operatorname{Lin}_{\alpha}+$ c $_{\alpha}^{2} \cdot$ Quad $_{\alpha}+\sum_{\alpha \beta} \boldsymbol{c}_{\alpha} \boldsymbol{c}_{\beta}$ Mix $_{\alpha \beta}$
- $n=N(\mathbf{0}) \rightarrow$ SM expectation
- Only one nuisance: correlated 2\% between all yields, samples, and bins (proxy LHC lumi). Flat prior
- under SM, sensitivity estimated as $-2 \Delta \log \mathcal{L}<1$ (2.30) and $-2 \Delta \log \mathcal{L}<3.84$ (5.99) for 1(2) W.C.

Analysis strategy

- Fit each variable for each process operator/s
- \forall operator/s, rank variables based on 68% range (area in 2D).
- \forall operator/s, combine best variables for each process

Process repeated for: Individual, bi-dimensional fits. Best individual variables used for profiled fits.

Given process, operator and variable a likelihood scan is performed.

Results are collected and best variable selected

Individual constraints - VBS+WW Combination

$$
\Lambda=1 \mathrm{TeV} \quad 100 \mathrm{fb}^{-1} \quad(13 \mathrm{TeV})
$$

- Most stringent constraints from VBS to 4-fermion ops, agrees with previous studies [arXiv:1809.04189]

Individual constraints - VBS+WW Combination

- $Q_{H I}^{(1)}, Q_{H W}\left(Q_{H \square}\right.$ next slide) only constrained by VBS.
- $Q_{H l}^{(1)}$ mostly constrained by VBS WZ/ZZ

Individual constraints - VBS+WW Combination

- Strong impact of fits including $O\left(\Lambda^{-4}\right)$ terms for $\frac{1}{2}$ operators. For the remaining, no difference observed.
- Among VBS, SSWW, OSWW > WZ, ZZ due to higher x-sec

Individual constraints - VBS semi-leptonic

Lack of Z+jets background $\alpha_{S}^{4} \alpha_{E W}^{2}$ (dominant in ZV semi-leptonic) \rightarrow not included in the combination. However, constraints competitive with diboson $W^{+} W^{-}$and slightly better than any other VBS channel considered, especially for $Q_{H l}^{(1)}$. Impact of $O\left(\Lambda^{-4}\right)$ less prominent w.r.t. other channels.

G. Boldrini, 31/01/2022, LHC EFT Area 2 meeting

Impact of QCD EFT dependence

$N(E W K+Q C D) \propto S M^{E W K}+S M^{Q C D}+\frac{C_{\alpha}}{\Lambda^{2}}\left(L i i^{E W K}+L i n^{Q C D}\right)+\frac{c_{\alpha}^{2}}{\Lambda^{4}}\left(\right.$ Quad ${ }^{E W K}+$ Quad $\left.^{Q C D}\right)$

$$
N(E W K) \propto S M^{E W K}+S M^{Q C D}+\frac{c_{\alpha}}{\Lambda^{2}} L i n^{E W K}+\frac{c_{\alpha}^{2}}{\Lambda^{4}} Q u a d^{E W K}
$$

including the background QCD dependence improves the sensitivity reach of all analyses.

Profiled constraints - VBS+WW Combination

Global fit guarantees SMEFT model and basis independence. VBS + WW marginalised constraints including all Λ^{-4} terms.

- All parameters free to float in likelihood maximisation
- Individual limits on operators obtained by profiling uninteresting parameters (unconstrained nuisances in the range $[-5,5]$)
- Profiled $\sim 1-20 \times$ Individual
- Low sensitivity \rightarrow need for a global fit involving more measurements
- Flat direction in $Q_{H l}^{(3)}-Q_{l l}^{(1)}$

2D constraints - VBS+WW Combination

Complementarity of VBS and

 diboson measurements:- $Q_{q q}$ operators only constrained by VBS
- $Q_{H \square}, Q_{H W}$ operators only constrained by VBS
- Degeneracy on $Q_{H I}^{(1)}$ resolved by VBS ZZ/WZ
- Flat directions resolved thanks to combination.

Impact of $O\left(\Lambda^{-4}\right)$ terms non negligible:

- Distorts the linear elliptic c.l. in a non-trivial way
- Linear-only sometimes better (differently from 1D): Mixed interference between dim-6 amplitudes can mitigate deviations

In this work we presented a comprehensive study at parton level of EFT dimension-6 effects on VBS and diboson $\mathbf{W}^{+} \mathbf{W}^{-}$

- VBS $2 \rightarrow 6$ simulated for most channels
- Individual sensitivity increases with Λ^{-4} terms
- Effect of Λ^{-4} terms not trivial in more dimensions
- EFT dependence of the QCD induced sample ($\alpha_{s}^{2} \alpha_{E W}^{4}$) increases sensitivity
- Addressed sensitivity reach of ZV+2j (semileptonic)
- Orthogonality of VBS and diboson measurements in more dimensions

Future perspectives

This was just the first step. Possible future developments based on this work

- Include the complete set of dim-6 operators
- Propagate to detector level (hadronisation, pile-up, reducible and not. backgrounds,...)
- Correct treatment of $\mathrm{ZV}+2 \mathrm{j}$ background (Z+jets)
- Combine with Higgs measurements
- Possible interplay of polarisation measurements
- VBS as tool to discriminate between different operators

VVV Cristiano Tarricone

VBF-Z Giorgio Pizzati

DAACMD

VBS fully-leptonic

Standard VBS LHC cuts searching for two forward jets with high invariant mass and large η gap, Central leptons and MET. ZZ +2 j implements VBS enriched and inclusive selections.

Process	Variables of interest	Selections
$\begin{aligned} & W^{ \pm} W^{ \pm}+2 j \\ & (p p \rightarrow 2 l 2 \nu j j) \\ & \\ & W^{+} W^{-}+2 j \\ & (p p \rightarrow 2 l 2 \nu j j) \\ & W^{ \pm} Z+2 j \\ & (p p \rightarrow 3 l \nu j j) \end{aligned}$	MET $, m_{j j}, m_{l l}, \phi_{j^{\prime}}, p_{T, j j^{i}}$ $p_{T, i}, p_{T, l l}, \Delta \eta_{j j}, \Delta \phi_{j j}, \eta_{j^{i}}, \eta_{i i}$ MET, $m_{j j}, m_{l l}, \phi_{j^{i}}, p_{T, j^{i}}, p_{T, i^{i}}$ $p_{T, l l}, \Delta \eta_{j j}, \Delta \phi_{j j}, \eta_{j^{i}}, \eta_{i}, m_{3 l}$ $p_{T, 31}, m_{W Z}, \delta \eta_{W Z}, \delta \phi_{W Z}, \Phi_{\text {planes }}$ $\theta_{l W}, \theta_{I Z}, \theta^{*}$	$M E T>30 \mathrm{GeV}$ $m_{i j}>500 \mathrm{GeV}$ $m_{l l}>20 \mathrm{GeV}$ $p_{T, l^{1}}>25 \mathrm{GeV}$ $p_{T, k^{2}}>20 \mathrm{GeV}$ $p_{T . j^{i}}>30 \mathrm{GeV}$ $\Delta \eta_{j j}>2.5$ $\left\|\eta_{j^{j}}\right\|<5$ $\left\|\eta_{i}\right\|<2.5$
$\begin{aligned} & z Z+2 j \\ & (p p \rightarrow 4 l 2 j) \end{aligned}$	$\begin{aligned} & m_{j j}, m_{l^{\prime 2}}, m_{l l}, m_{4 l}, \phi_{j i}, p_{T, j^{i}}, p_{T, l^{i}}, \\ & p_{T, l^{2},}, p_{T, l^{ \pm} \pm \pm} \Delta \phi_{j j}, \Delta \eta_{j j}, \eta_{j^{\prime}}, \eta_{l^{i}} \end{aligned}$	$\begin{aligned} & m_{j j}>400 \mathrm{GeV} \\ & 60<m_{l l}<120 \mathrm{GeV} \\ & m_{l i l}>180 \mathrm{GeV} \\ & p_{T, l^{\prime}}>20 \mathrm{GeV} \\ & p_{T, l^{\prime}}>10 \mathrm{GeV} \\ & p_{T, l^{i}}>5 \mathrm{GeV} \\ & p_{T, j^{\prime, 2}}>30 \mathrm{GeV} \\ & \Delta \eta_{j j}>2.4 \\ & \left\|\eta_{j i}\right\|<4.7 \\ & \left\|\eta_{i j}\right\|<2.5 \\ & \Delta R\left(l^{i}, j^{k}\right)>0.4 \end{aligned}$

Same Sign WW distributions: ©.
Opposite Sign WW distributions: ©
VBS ZZ distributions: ©.
VBS WZ distributions: ©

VBS semi-leptonic

- First evidence for semi-leptonic VBS this year CMS-PAS-SMP-20-013
- $W \rightarrow q \bar{q}$: more statistics, more backgrounds.
- Major background: Z+jets, not simulated \rightarrow separate treatment.
- Highest $m_{j j}$ partons tagged as VBS jets ($\epsilon \sim 75 \%$).

VBS ZV distributions: ©.

Process	Variables of interest	Selections
$\begin{aligned} & z V+2 j \\ & (p p \rightarrow 2 l j j j j) \end{aligned}$	$\begin{aligned} & m_{j j}, m_{l l}, \phi_{j i}, p_{T, j^{i}}, p_{T, l^{i}} \\ & p_{T, l l}, \Delta \eta_{j j}, \Delta \phi_{j j}, \eta_{j^{\prime}} \\ & \eta_{l i} \end{aligned}$	$\begin{aligned} & m_{j j}>1500 \mathrm{GeV} \\ & 60<m_{j \mathrm{~V}}^{V}<110 \mathrm{GeV} \\ & 85<m_{l l}<95 \mathrm{GeV} \\ & p_{T, l^{1}}>25 \mathrm{GeV} \\ & p_{T, l^{2}}>20 \mathrm{GeV} \\ & p_{T, j^{i}}>100 \mathrm{GeV} \\ & \Delta \eta_{j \mathrm{j}}>3.5 \\ & \left\|\eta_{j^{\prime}}\right\|<5 \\ & \left\|\eta_{l^{\prime}}\right\|<2.5 \end{aligned}$

Diboson $W^{+} W^{-}$

- Highest cross section

Diboson WW distributions:

Process	Variables	Selections
$W^{+} W^{-}+0 j$	$M E T, m_{l l}, p_{T, l^{I}}$,	$M E T>30 \mathrm{GeV}$
$(p p \rightarrow 2 l 2 \nu)$	$p_{T, l l}, \eta_{l l^{i}}$	$m_{l l}>60 \mathrm{GeV}$
		$p_{T, l^{1}}>25 \mathrm{GeV}$
	$p_{T, l^{2}}>20 \mathrm{GeV}$	
		$\left\|\eta_{l l^{i}}\right\|<2.5$

- Historically main playground for aTGC and dim-6 EFT
- usually few operators studied: $Q_{w}, Q_{w w w}, Q_{B}$ and CP violating (HISZ basis)
- DF o-jet category high purity (main backgrounds $t \bar{t}$, non-prompt, DY)

Analysis setup

BICOCCA

Ntuples and LHE generation framework [https://github.com/UniMiBAnalyses/D6EFTStudies]

Analysis setup

Post-processing, QCD merging, and shape maker based on https://github.com/GiacomoBoldrini/D6tomkDatacard

Tailored to latinos framework datacard maker
https://github.com/latinos/LatinoAnalysis

Analysis setup

EFT analysis inside CMS problematic. The fitting tool Combine does not allow negative shapes (such as linear and mixed interference). Workaround: redefine each component as positive-definite. Combine model for EFT studies with up to $O\left(\Lambda^{-4}\right)$ and possibility to add dim-8 operators: AnalyticAnomalousCoupling More details in CMS internal note.

$$
\begin{aligned}
N & =S \cdot\left(1-\sum_{i} k_{i}+\sum_{i, i \ll} \sum_{j} k_{i} \cdot k_{j}\right) \\
& +\left[\sum_{i} k_{i}-\sum_{i \neq j} k_{i} \cdot k_{j}\right] \cdot\left(S+L_{i}+Q_{i}\right) \\
& +\sum_{i}\left(k_{i}^{2}-k_{i}\right) \cdot Q_{i} \\
& +\sum_{i, i<j} \sum_{j} k_{i} \cdot k_{j} \cdot\left[S+L_{i}+L_{j}+Q_{i}+Q_{j}+2 \cdot M_{i j}\right]
\end{aligned}
$$

Generations

SMEFTsim newest version:

[https://github.com/SMEFTsim/SMEFTsim]

SSWW-EW	generate p p > e+ ve mu+ vm j j QCD=0 SMHLOOP=0
OSWW-EW	generate $\mathrm{p} p$ > e+ ve mu- vm j j QCD=0 SMHLOOP $=0$
WZ-EW	generate p p > e+ e- mu+ vm j j QCD $=0$ SMHLOOP $=0$
ZZ-EW	generate p p > e+ e- mu+ mu- j j QCD $=0$ SMHLOOP $=0$
ZV-EW	
WW	generate $\mathrm{p} p>\mathrm{e}$ + ve mu- vm SMHLOOP $=0$
ZV-QCD	
OSWW-QCD	generate $\mathrm{p} p$ > e^{+}ve mu- vm j j QCD==2 SMHLOOP=0
WZ-QCD	generate $\mathrm{p} p$ > $\mathrm{e}^{+} \mathrm{e}-\mathrm{mu}+\mathrm{vm} \mathrm{j}$ j QCD= $=2$ SMHLOOP=0
ZZ-QCD	

$\sqrt{s}=13 \mathrm{TeV}$, NNLO pdfs from NNPDF $\alpha_{\mathrm{s}}=0.118$ (lhaid=325500) and 4 -flavour scheme. $U(3)^{5}$ symmetry group and $\left\{m_{W}, m_{Z}, G_{F}\right\}$ input scheme. $\Lambda=1 \mathrm{TeV}$

Expected constraints at future colliders

Projection of individual constraints to future LHC phases

 Integrated luminosities: LHC Run II $\sim{100 f^{-1}}^{-1}$, LHC Run III $>30 \mathrm{fb}^{-1}$, HL-LHC $\sim 3 \mathrm{ab}^{-1}$. No scaling of the nuisance constraint involved.At the HL-LHC, the VBS-only combination is expected to constrain all operators to less than [-1,1], including diboson lowers the range to [-0.5,0.5]. Roughly a factor ~ 5 improvement expected from LHC Run II to HL-LHC.

