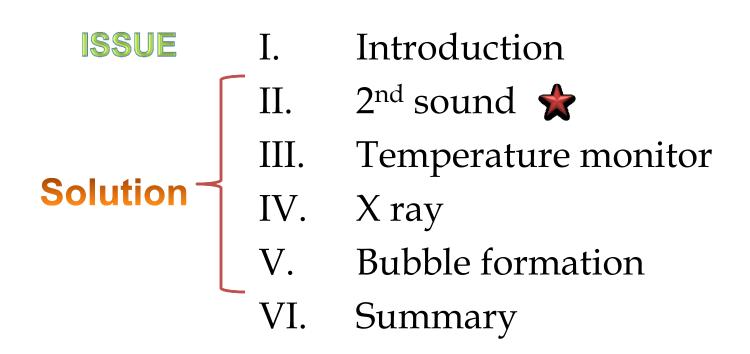


5th SPL collaboration meeting 25 November 2010


Diagnostics system for SPL cavities & & 2nd sound measurement @ Cryolab

Kitty Liao

CERN BE-RF-KS

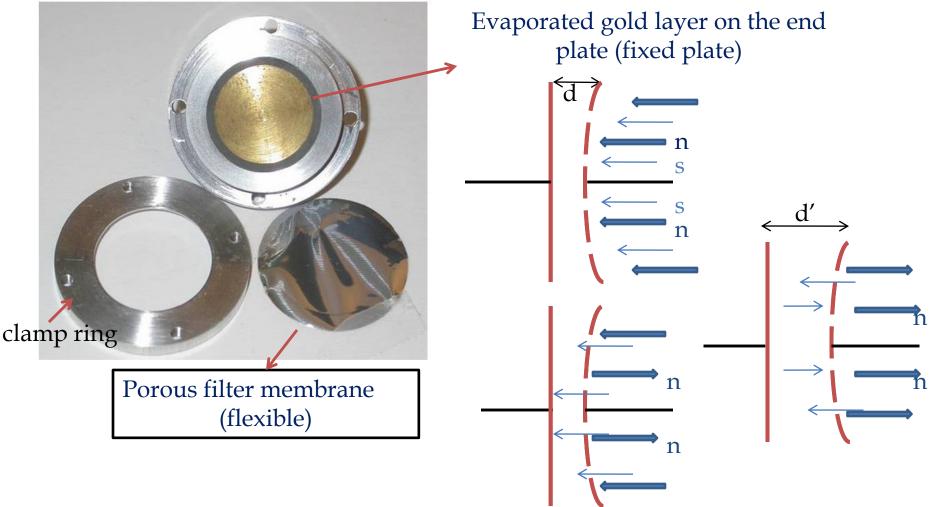
Diagnostics system for SPL cavities & the 2nd sound measurement @ Cryolab

Introduction

- 1. Thermal breakdown due to defects
- 2. Emission of electrons from high E field absorbs the power of the cavity

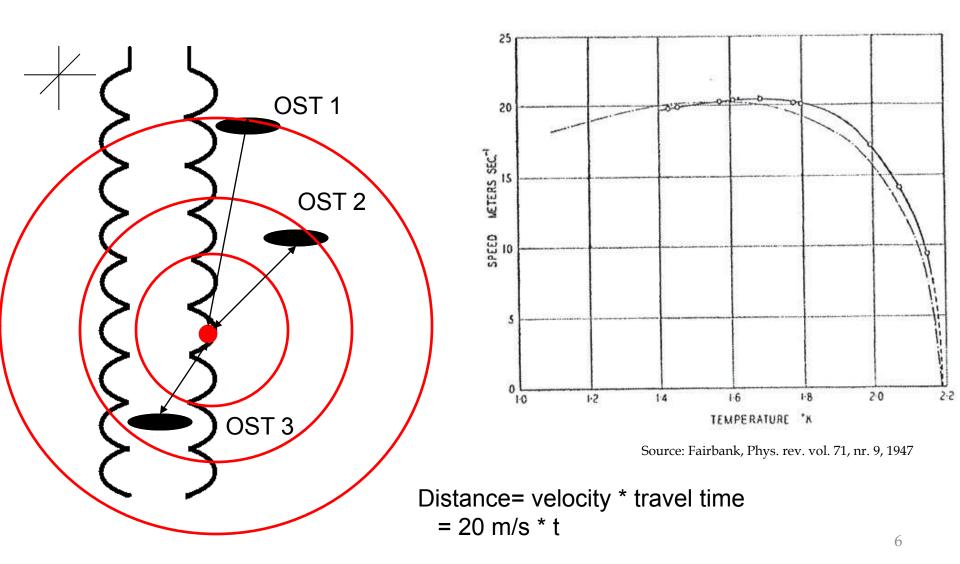
	Temperature maps	2 nd sound	bubbles	X ray
Thermal breakdown due to defects (quench)	\checkmark	\checkmark	\checkmark	
Field emission	\checkmark			\checkmark

2nd sound

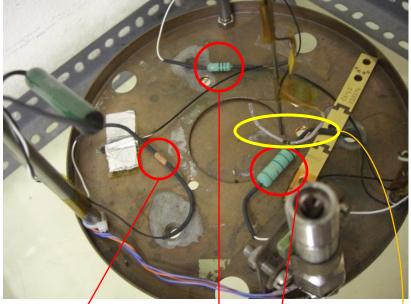

- What is 'second sound'?
 - ✓ quantum mechanical phenomenon seen in superfluids
 - ✓ heat is transferred in a wave-like motion

✓ heat : 2nd sound | | pressure : 1st sound

- How to generate the second sound?
 - ✓ Heat source initiates
 - ✓ the counterflow of the superfluid (no entropy) and normal component (entropy)


Oscillating superleak transducer

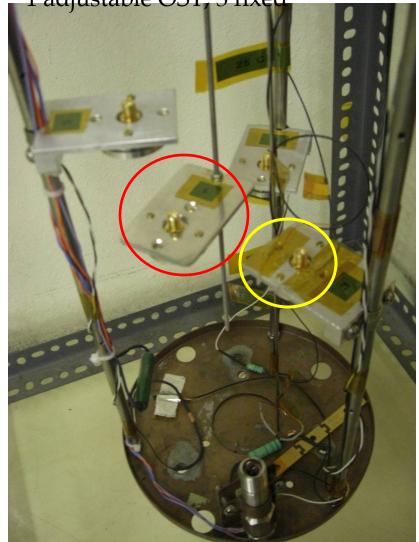
CERN



OST to track the quench spot

CERN

2nd sound setup @ Cryolab 3 heaters 1 adjustable thermometer, 1 fixed 1 adjustable OST, 3 fixed

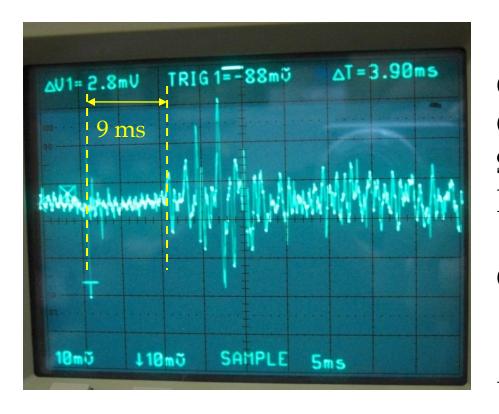


Metal film, 2W

FR

Wirewound, 3W Wirewound, 7W

(A.B) carbon resistor 100 Ω , 1/8W

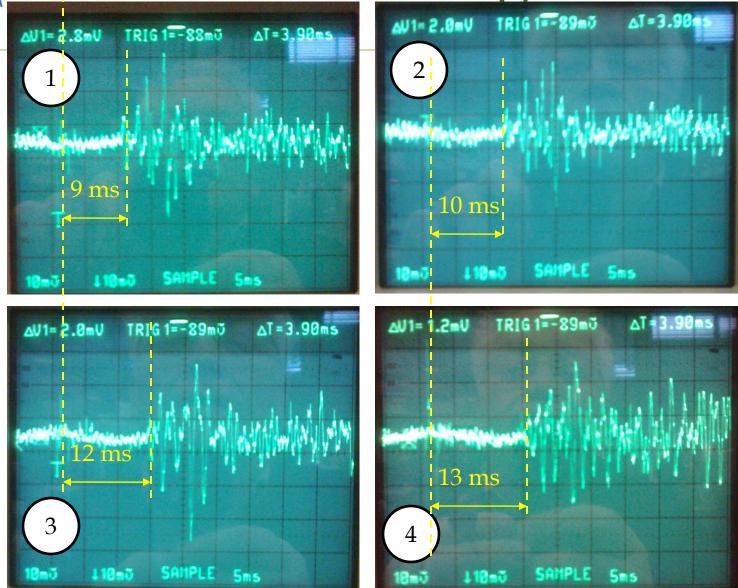

CERN

I. Introduction II. 2nd sound

III. Temp. maps

IV. X ray V. Bubble formation VI. Summary

2nd sound signal


OST 1: 70pF *, f=12kHz* (R.T) OST 2: 63.5pF*, f=6.5kHz* (R.T) Suppress common mode hum (50Hz)

OST 1 (20 cm) - OST2 (20cm)

V= D/ Δt =20cm/9ms =22.2 m/s

2nd sound signal

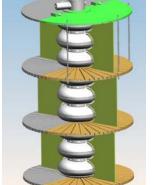
CERN

Photos taken by Wolfgang Weingarten

Temperature maps

Field emission	quench	Precursor	Residual (loss)distribution
\checkmark	\checkmark	\checkmark	\checkmark

Methods:


ER

1. Fixed

2. Rotating

Source: Moeller et al. Proc. of SRF09

Source: Canabal et al. Proc. of IPAC '07

Source: Tongu et al. Proc. of IPAC '10

⁽Sensor selection for temperature mappings

CÊRN

	Differential accuracy	Absolute precision (reproducibil ity)	Dimensionless sensitivity	Price per unit
Carbon resistor				
Silicon diode				$\overline{\mathbf{i}}$
Cernox		\odot	\odot	$\overline{\mathbf{i}}$
Germanium resistor		\bigcirc	\bigcirc	$\overline{\mathbf{i}}$
Ruthenium Oxide			\odot	$\overline{\mathbf{O}}$

Temperature mapping proposal

- 1 cell test & (fast real time multiple cell measurement):
- \checkmark fixed scheme

CERN

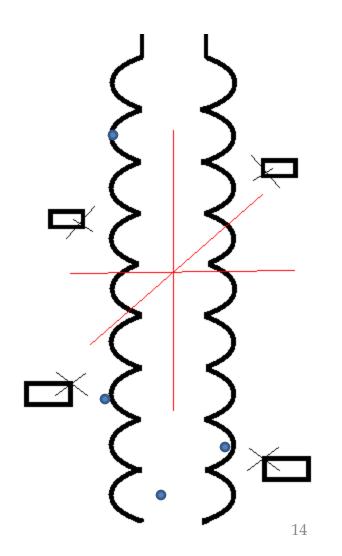
- ✓ Sensor strips for attachment onto the cavity walls
- \checkmark 32 *32= 1024 sensors per cell
- \checkmark ~5000 sensors for 5 cell, fixed board
- Multiple cell test (patience needed)
- \checkmark rotating scheme
- ✓ motor to drive the wiring arms, multiplexing circuit

• Sensors:

1. Allen Bradley Carbon resistors

Source: Canabal et al. Proc. of IPAC '07

X ray detection


- At high E fields, the field emitted electrons collide with the cavity wall → produce bremstrahlung.
- Photodiodes (silicon) implemented along with the temperature sensors and an amplifier circuit for integration
- Enable discrimination between defects and electron impact spots.
- Used under all helium conditions
- →Measurement of the spatial X-ray distribution : location & distribution of electron emission

Bubble formation (nucleate boiling)

around the heater area: heat accumulation → boiling

CERN

- 4 Intensified charged-coupled device (CCD chip) (Extremely high sensitivity, used in night vision devices, for cryogenic use, in normal boiling He)
- 90 degree spacing

CERN

I. Introduction II. 2nd sound III. Temp. maps IV. X ray V. Bubble formation VI. Summary

Summary

Signal	2 nd sound	Temperat ure maps	X ray	Bubble formation	
Equipment	OST	Fixed/ carbon resistors	Fixed/ photodi odes	ICCD camera	₽
Thermal breakdown	\checkmark	\checkmark		\checkmark	
Field emission		\checkmark	✓		
Helium needs	Superfluid	Subcooled (better sensitivity)	All He	Normal boiling He	Camera C

Temperature sensor strips

Acknowledgements

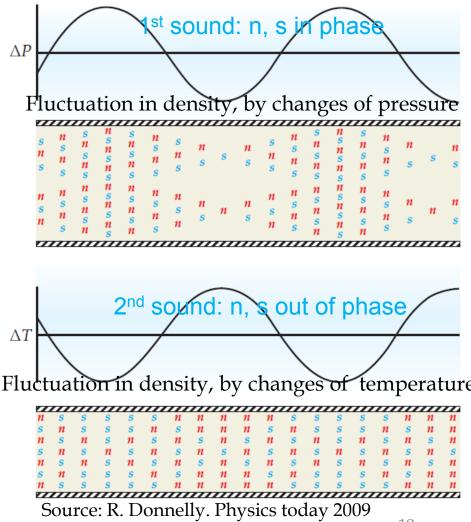
- OSTs by Prof. Georg Hoffstätter, Dr. Zack Conway at Cornell University, Ithaca, N.Y., USA
- TE-CRG/Cryolab: Johan Bremer and his team
- Supervisor: Dr. Wolfgang Weingarten
- Colleagues and former colleagues of BE-RF group

Q & A

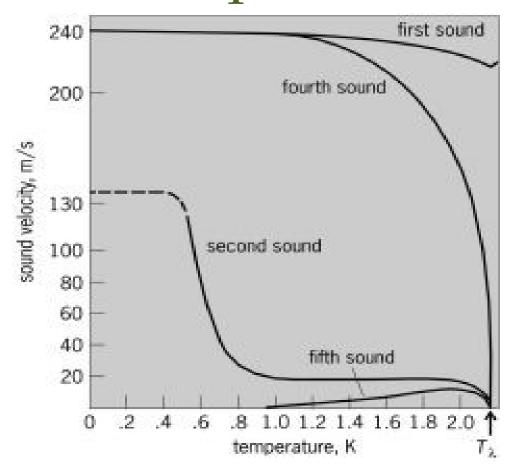
Thank you very much!

Kitty.Liao@cern.ch

Diagnostics system for SPL cavities & & 2nd sound setup @ Cryolab


Back up slides

Kitty Liao CERN BE-RF-KS


Second sound extra

- Helium →Lambda point 2.17K → superfluid He
- 2 fluid model
 Normal fluid Entropy, viscocity
 normal component + superfluid component
 Bose-Einstein condensate With no entropy, no viscosity

Second sound and first sound below the lambda point

- 1. First sound- pressure wave
- 2. Second sound- entropy (temperature) wave
- 3. Third sound- wave travels in very thin films of helium in which the thickness of the film varies.
- 4. Fourth sound- pressure wave travels in superfluid helium.When its confined in a porous material.
- 5. Fifth sound- temperature wave that propagates in helium confined in superleaks. (analogous to second sound)

McGraw-Hill Concise Encyclopedia of Physics. © 2002 by The McGraw-Hill Companies, Inc.

Defects diagnostics method	Sensor type	Temperatur e range	Sensitivity	Performance in Magnetic field	Mechanical layout	Multiplexing
Fixed (1	Carbon (Allen-	1K-100K	with 10mK resolution	Small M field dependence		No
cell)	Brad.)		resolution	ucpendence		
Fixed (9 cell)	Carbon (Allen- Brad.)	1K-100K	0.186mV/mK at 2 K			Yes
Fixed	Silicon diode	1.4K-500K	Nearly constant 2.3mV/K (S _D =- 0.01 at1.4K)	Fair above T>60K		Yes, but not separate
High density (fixed strips)	Ruthenium Oxide (RuO ₂)	0.01K-40K	Negligible for T>40K (S _D ~- 0.07) S _D ~-0.5 at 1.4K	Good below 4K		Yes (CMOS)
Rotating ***	Carbon resistors	1K-100K	<5mK	Small M field dependence		-many cables that move around
Fast thermometr y (equator & iris)	Cernox TM	0.10K-325K	S _D =-1.6 at1.4K	Excellent above 1K		No, few cables

I. Introduction II. 2nd sound III. 1st sound **IV. Temp maps** V. X ray VI. Bubble formation VII. Summary

Sensor selection for temperature mappings

Temperature range		Accuracy	Dimensionless sensitivity dR/R x T/dT		Price per unit	
Low	High		1.4	4.2	20	
1.4K	325K	±20mK(<10K) ; 55mK (10K~475K)	-0.01	-0.09	-0.29	USD\$ 100~300
0.3K	420K	±5mK (4,2K)	-1.6	-0.9	-0.59	USD\$ 100~300
0.1K~1. 4K	40K~10 0K	±5mK (<10K)	-0.93~ -3.9	-0.73~ -2.6	-0.62~ -2.4	USD\$100 ~300
0.05K	40K	±13mK (4.2K)	-0.47	-0.25	-0.07	USD\$ 100~300
	range Low 1.4K 0.3K 0.1K~1. 4K	range Low High 1.4K 325K 0.3K 420K 0.1K~1. 40K~10 0K 0K	range Accuracy Low High 1.4K $325K$ $\pm 20mK(<10K)$ $;55mK$ $(10K~475K)$ 0.3K $420K$ $45mK(4,2K)$ $0.1K~1.$ $40K~10$ $0K$ $\pm 5mK(<10K)$	range Accuracy sensity Low High 1.4 1.4K $325K$ $\pm 20mK(<10K)$ -0.01 1.4K $325K$ $\pm 20mK(<10K)$ -0.01 0.3K $420K$ $\pm 5mK(4,2K)$ -1.6 0.1K~1. $40K~10$ $\pm 5mK(<10K)$ $-0.93~$ $4K$ $0K$ $\pm 5mK(<10K)$ $-0.93~$	range Accuracy sensitivity difference Low High 1.4 4.2 1.4K 325K $\pm 20mK(<10K)$ -0.01 -0.09 0.3K 420K $\pm 5mK(4,2K)$ -1.6 -0.9 0.1K~1. 40K~10 $\pm 5mK(<10K)$ -0.93~ -0.73~ $4K$ MK MK MK MK MK	rangeAccuracysensitivity dR/R x T/dTLowHigh1.44.2201.4K325K $\pm 20mK(<10K)$ $;55mK(10K\sim 475K)-0.01-0.09-0.290.3K420K\pm 5mK(4,2K)-1.6-0.9-0.590.1K~1.4K40K~10\pm 5mK(<10K)OK-0.93~-3.9-0.73~-2.6-0.62~-2.4$

Adapted from Lakeshore datasheet document