SPL@BNL Update

Ilan Ben-Zvi for the Stony Brook, BNL and AES SPL teams Presented by Rama Calaga

The BNL High-Current R&D

- Aimed at CW beam currents of >0.5 amperes
- We are developing a new 5-cell highcurrent cavity
- Collaboration with AES
- Much was reported in last meeting at Lund.

Our first high current ERL cavity:

Reached 20 MV/m with Q of 10^10

Tested horizontally to 20 MV/m

Design of new ERL cavity

Hallmarks: Improved SRF properties and HOM damping. Use pick-up probes rather than ferrites or waveguides. HOM power conducted through coax lines to room temperature loads.

U.S. DEPARTMENT OF ENERGY

Comparison: New and original

Parameters	BNL I	BNL III
Frequency [MHZ]	704	703.79
beta	1	1
Cells No.	5	5
Geometry Factor	225	283
(R/Q)/cell [Ω/cell]	80.8	101.26
Epeak/Eacc	1.97	2.46
Bpeak/Eacc [mT/MV/m]	5.78	4.26
Coupling factor [%]	3.00	3.02
Length (cm)	152	144 (SPL), 160 (eRHIC)
Beam pipe radius (mm)	120	110

Band-stop filter design Wencan Xu

A band-stop filter is simpler and safer than a notch filter.

Lorentz Coefficient for Different Stiffener Locations

Design of a copper prototype (AES)

Pickup Probe End Group BROOKHAVEN NATIONAL LABORATORY

Helium Pressure Sensitivity

Model for Pressure Sensitivity and Structural Modes

Local modification to material modulus to account for bellows and tuner

Cavity First Structural Mode

500 kW CW couplers for SRF gun cavity

- Two 500 kW were built.
- Conditioning cart built, ready to go
- Two similar but lower average power couplers to be tested to destruction.
- We have a 704 MHz 1 MW CW klystron

Vertical Test Facility

SUMMARY

- We are building a 5-cell high-performance cavity
- New features:
 - Better SRF performance
 - Probe with coax line and band-stop filter
- The cavity mechanical design and construction is done at AES
- We are testing 500 kW CW couplers
- We have 704 MHz MW RF and cryogenic testing capabilities

