

Status of the SPL study

R. Garoby – 25/11/2010

Fifth SPL Collaboration Meeting 25-26 November 2010 / CERN

OUTLINE

- 1. Updated plans for the SPL R & D
 - 2. Recent progress
 - 3. Near future...

CERN Medium Term Plan 2011-2015

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Action to be taken Voting procedure

For discussion	SCIENTIFIC POLICY COMMITTEE 267 th Meeting 24 August 2010	_					
For recommendation to Council	FINANCE COMMITTEE 331 st Meeting 25 August 2010	Chapter I and II: Simple majority of Member States represented and voting (abstentions are not counted) and 70% of the contributions of the Member States represented and present for the voting (abstentions are counted as votes against) and at least 51% of the contributions of all Member States Chapter IV: Two-thirds majority of Member States represented and voting (abstentions are not counted) and 70% of the contributions of the Member States represented and present for the voting (abstentions are counted as votes against) and at least 51% of the contributions of all Member States					
For approval	COUNCIL 156 th Session 16 September 2010	Chapter I and II: Simple majority of Member States represented and voting (abstentions are not counted) Chapter IV: Two-thirds majority of Member States represented and voting (abstentions are not counted)					

Medium-Term Plan for the period 2011-2015 and Draft Budget of the Organization for the fifty-seventh financial year 2011

Expenses

R.G.

- 1. Reduce the pace of additional accelerator consolidation by 10 MCHF from 30 MCHF p.a. to 20 MCHF p.a. (integral over the period 48.4 MCHF, 0.8 MCHF in 2011); (fact sheet 15, figure 3)
- 2. Reduce the pace of LHC spares procurement and consolidation (34.2 MCHF, zero in 2011); (fact sheets 1, 7, figure 2)
- Re-profile PS Booster extraction energy and SPS upgrades to 2016 (i.e. over six years instead of five) (10.5 MCHF, 2.1 MCHF in 2011); (fact sheet 30, figure 5)

3 25/11/2010

. . .

Summary from CERN MTP

- No construction of LP-SPL and PS2.
- Termination of studies to allow for the LP-SPL and PS2 to remain as possible fall-back solutions.
- Continuation of <u>SPL R & D for high beam power</u> in view of potential use in a neutrino facility.
- Material budget: 2 MCHF/year
- Upgrade of the existing LHC injectors
 [e.g. increasing the PSB to PS transfer energy]
- Consolidation and upgrade of PSB, PS and SPS.

« LIU » Project Completion in ~2016

HP-SPL basic characteristics

Beam characteristics of the main options

	Option 1	Option 2						
Energy (GeV)	2.5 or 5	2.5 and 5						
Beam power (MW)	2.25 MW (2.5 GeV) <u>or</u> 4.5 MW (5 GeV)	5 MW (2.5 GeV) <u>and</u> 4 MW (5 GeV)						
Rep. frequency (Hz)								
Protons/pulse (x 10 ¹⁴)	1.1	2 (2.5 GeV) + 1 (5 GeV)						
Av. Pulse current (mA)	20							
Pulse duration (ms)	0.9	1 (2.5 GeV) + 0.4 (5 GeV)						

 $2 \times \text{beam current} \Rightarrow 2 \times \text{nb. of klystrons etc.}$

Objectives of the SPL R & D

(in continuity with the work previously done for the LP-SPL)

Motivation

- Preserve potential for some alternative physics programmes (Neutrinos, RIB)
- Preserve possibility of new injectors at long term
- Update CERN competences in superconducting RF

Description

- Focused on high beam power
- R & D only (<u>no work on integration / civil engineering / environmental impact</u>)

Main objectives

- End 2010-2011: ~simultaneously with the PS2 CDR): LP-SPL CDR
- 2013:
 - High power test of 4 sc cavities in a short horizontal cryostat
 - SPL CDR
- Beyond 2013:
 - Construction of a full size cryomodule, development of full performance modulator...
 - Study and development in view of a specific project (neutrino facility?): integration, safety, civil engineering environmental impact study...

SPL R & D subjects until 2015

(in continuity with the work previously done for the LP-SPL)

H⁻ source R & D(to be continued after end of SLHC-PP for the needs of Linac4)

Treated in sLHC-PP

Partly

addressed in

sLHC-PP

Study of the optimum high power RF architecture for a high power SPL

Partly addressed in "EuCARD"

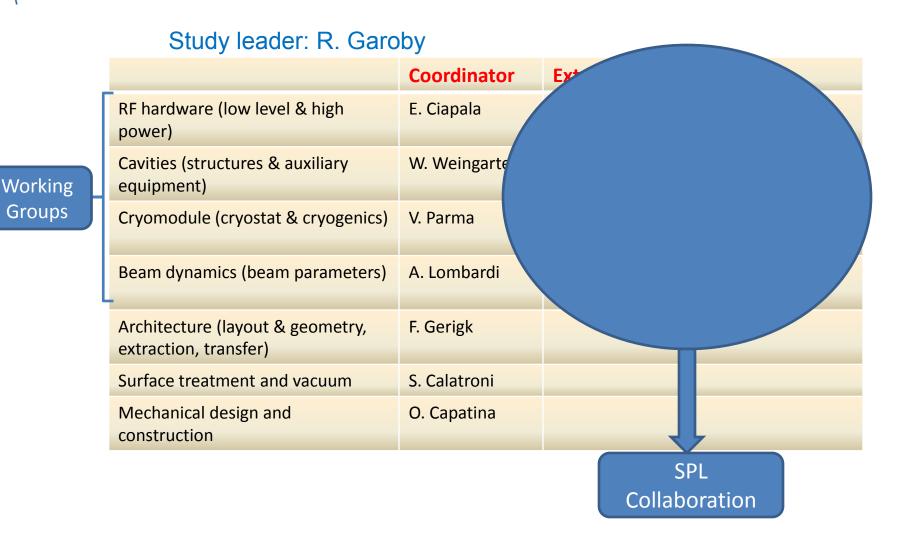
Design, construction and test of superconducting RF cavities (704 MHz - 5 cells - β =1)

Partly supported by French "inkind" contrib. Development of high power RF coupler, HOM damper and adaptation of tuner

With ESS support for the modulator

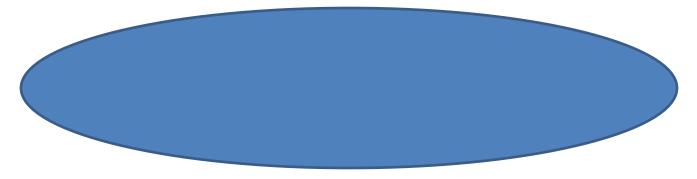
Upgrade of the SM18 test place [2 K cooling + pulsed RF source at 704 MHz (1 MW @ 50 Hz)]

- Pulsed high power RF tests of contiguous cavities in a common cryostat
- (Design, construction and test a high power klystron modulator: delayed)
- (Design, construction and test of a prototype cryomodule equipped with $8 \beta=1$ cavities: delayed)


Planning for cavities and cryomodule

?

	2011			2012			2013					20	14		2015					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
SM18 - 2K Cryogenics			V cryo.					X												
SM18 modulator					rom dustr			- 1										CERN		
SM18 - 704 MHz High Power RF					(ESS)	Y		X										design		
High Power RF couplers		4+4		4													8			
Superconducting cavities				4													8			
Assembled string of 4 cavities						X														
Horiz. test cryostat (4 cav.)						X														
Equipped horiz. test cryostat								X												
High power RF tests in test cryo.										X								\ <u>\</u>		
Assembled string of 8 cavities						~ iı	n-pha	ise				DR &		X			T Z	year	5	
8 cavities cryomodule						W	ith ES				futu	re pla	ans	X						
Conceptual Design Report						uesig	јі ир					X				X				


Organization (Reminder...)

- SPL documentation in EDMS [https://edms.cern.ch/nav/SLHC-000008]
- SPL meetings in Indico [http://indico.cern.ch/categoryDisplay.py?categld=1893]

SPL Work Packages inside CERN

- Cryomodule (V. Parma)
- Cavities (W. Weingarten/O. Capatina)
- RF couplers (E. Montesinos)
- RF for SM18 (O. Brunner)
- Diagnostics and infrastructure in SM18 (W. Weingarten)
- Cryogenics in SM18 (L. Tavian)
- General (R. Garoby)

Related R & D (Proposals)

1. Nb coating of Cu cavities, using the HIPIMS (High Power Impulse Magnetron Sputtering) technology

- In collaboration with Sheffield Hallam University (UK).
- Supported in the context of the construction of LHC spare cavities.
- Potentially very attractive technology for the SPL (raw material cost, mechanical stiffness).
- First results on low beta 704 MHz cavity: end 2012

2. R & D on H⁻ ion source

- CERN internal activity
- Continuation of the work done for the Linac4 H⁻ source and the SPL R & D supported within the SLHC-PP (until March 2011)
- Focused on the immediate needs of Linac4 (2015)

3. Proposals submitted to the EC (today!)

- "CRISP": WP jointly with ESS and XFEL concerning the test of sc cavities
- "LAGUNA-LBNO" DS: WP about proton driver for a neutrino facility at CERN



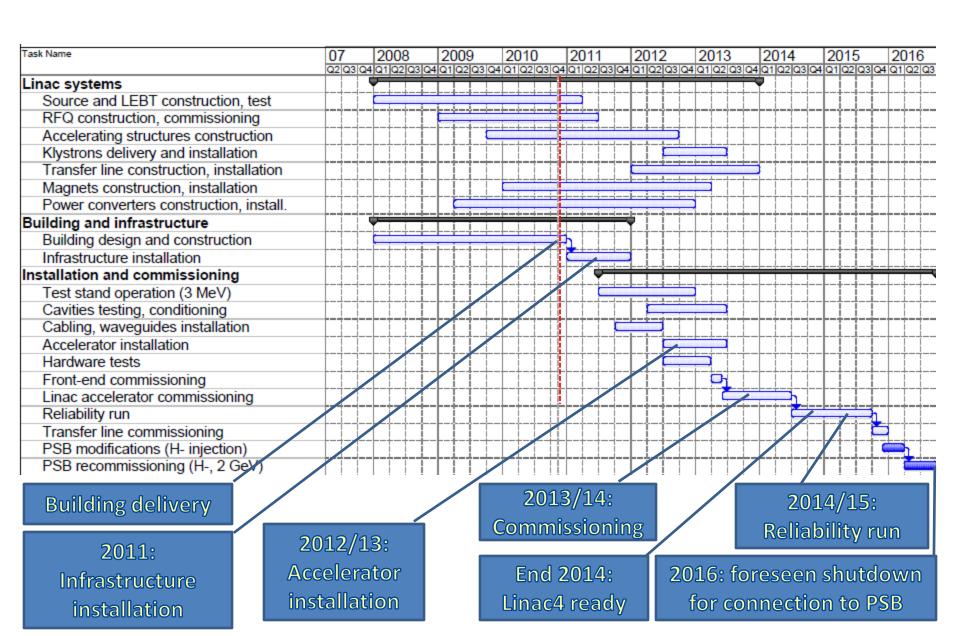
OUTLINE

- 1. Updated plans for the SPL R & D
- 2. Recent progress
 - 3. Near future...

Linac4 Civil Engineering

Linac4 Building construction – 2008/10

Construction status



Civil engineering completed in exactly 2 years (delivery on 29.10.2010).

2011: installation of infrastructure (crane, lift, false floor, electrical and cooling networks, safety equipment, cabling, waveguides, ...).

Linac4 – schedule

Activity since June 2010

Redefinition of the workplan to fit with the MTP Integrated planning in preparation

- + Work within WGS [e.g. video-conferences of WG2 (~1/month), technical discussions, contributions to conferences and workshops, visits, etc.]
- + Workshop on specification of prototype cryomodule:
 - 19 October 2010: http://indico.cern.ch/conferenceDisplay.py?confld=108640
- + Collaboration Meeting:
 - End November 2010: <u>5th SPL Collaboration Meeting</u>
- + Coordination (~2 meetings/month)
- + Collaborations:
 - Departure of TRIUMF
 - Letter of agreement with FNAL
 - Interest of TAC (Turkey)

OUTLINE

- 1. Updated plans for the SPL R & D
- 2. Recent progress
- 3. Near future...

Near future

- Extension of the study to a full proton driver for a neutrino factory
- Optimization & cost estimate of full proton driver (contribution to the IDS-NF)

... concerning the SPL itself (non-exhaustive list):

- Construction of cavities in industry
- Start of upgrade of cryogenics and overall infrastructure in SM18
- Specification & order of klystron modulator from industry (ESS)
- Cryomodule design review (early 2011) + beginning of construction (IN2P3)
- Specification & construction of tuners and He tanks (CEA)
- LP-SPL CDR (jointly with PS2) (Beginning of 2011)
- Construction & test of High power RF couplers + Review (March 2011)
- Test of single cell sc cavity
- Joint ESS-SPL meeting (June 2011)

THANK YOU FOR YOUR ATTENTION!