

Status of the SPL cryo-module development (report from WG3)

V.Parma, CERN, TE-MSC

Outline

- Reminder of the frame of WG3
- Cryomodule Specification meeting (19 th September last)
- Recent advances:
- Summary and outlook

Short cryo-module: Goal & Motivation

Goal:

• Design and construct a $\frac{1}{2}$ -lenght cryo-module for 4 β =1 cavities

Motivation:

- Test-bench for RF testing on a multi-cavity assembly driven by a single or multiple RF source(s)
- Enable RF testing of cavities in horizontal position, housed in their helium tanks, tuned, and powered by machine-type RF couplers
- Validate by testing critical components like RF couplers, tuners, HOM couplers in their real operating environment

Cryo-module-related goals:

- Validation of design
 - Innovative supporting of cavities via the RF couplers
- Learning of the critical assembly phases:
 - handling of long string of cavities with complete RF coupler
 - alignment/assembly in the cryostat
- Validation through operational experience:
 - Cool-down/warm-up transients and thermal mechanics
 - Gas-cooled RF coupler double-wall tube
 - Alignment/position stability of cavities
 - Cryogenic operation (He filling, level control, etc.)

Working group (WG3)

System/Activity	Responsible/member	Lab
Machine architecture	F.Gerigk	CERN
WG3 coordination	V.Parma	CERN
Cryo-module conceptual design	V.Parma. Team: N.Bourcey, P.Coelho, O.Capatina, D.Caparros, Th.Renaglia, A.Vande Craen	CERN
Cryo-module detailed design & Integration CNRS	P.Duthil (P.Duchesne) + CNRS Team	CNRS/IN2P3-Orsay
Cryostat assembly tooling	P.Duthil (P.Duchesne)	CNRS/IN2P3-Orsay
WG 2 activity (RF cavities/He vessel/tuner, RF coupler)	W.Weingarten/S.Chel/O.Capatina/ E.Montesinos	CERN, CEA-Saclay
Vacuum systems	S.Calatroni	CERN
Cryogenics	U.Wagner	CERN
Survey and alignment	D.Missiaen	CERN

Main contributions for short cryo-module

Institute	Supply
CEA – Saclay (F)	 Design of β=1 cavities (EuCARD task 10.2.2) Design & construction of 4 helium vessels for β=1 cavities (French in-kind contribution) Supply of 4 (+4) tuners (French in-kind contribution) Testing of RF couplers
CNRS - IPN – Orsay (F)	 Design and construction of prototype cryomodule cryostat (French in-kind contribution) Design & construction of cryostat assembly tools (French in- kind contribution)
Stony Brook/BNL/AES	(Under DOE grant)
team	 Designing, building and testing of 1 β=1 SPL cavity.
CERN	1. 4 (+4) β=1 cavities
CERN	1. 4 (+5) RF couplers

Goal of the cryomodule spec meeting (CERN 19th September 2010)

- Identify and address still outstanding cryo-module design specification issues
- Address the specific requirements related to the test program of the short cryomodule at CERN (for ex.: windows for insitu intervention, need for diagnostics instrumentation, etc.).
- Converge towards a technical specification to allow the continuation of the engineering of the short cryo-module, or identify road-maps to settle outstanding issues.
- Engineering Specification in preparation at CERN (end 2010)

20 participants from: CEA-Saclay, CNRS-IPN, JLAB, SNS, FNAL, ESSS and CERN <u>http://indico.cern.ch/conferenceDisplay.py?confId=108640</u>

Cavity alignment requirements

Transversal position specification

BUDGET OF TOLERANCE					
Step	Sub-step	Tolerances (3σ)	Total envelopes		
	Cavity and He vessel assembly $\pm 0.1 mm$		Positioning of the cavity		
Cryo-module assembly	Supporting system assembly	± 0.2 mm	w.r.t. external referential		
	Vacuum vessel construction	± 0.2 mm	± 0.5 mm		
Transport and handling (± 0.5 g any direction)	N.A.	± 0.1 mm			
	Vacuum pumping		Reproducibility/Stability of the cavity position w.r.t. external referential		
	Cool-down				
Testing/operation	RF tests	± 0.2 mm	± 0.3 mm		
	Warm-up				
	Thermal cycles				

Construction precision

V Cr

CERN

Cryogenic Scheme

Pipe sizes and T, p operating conditions

Line	Description	Pipe Size	Normal	Normal	Cool-	Cool-	T range	Maximum	Design	Test	Comment
		(ID,mm)	operating	operating	down/w	down/warm-	[K]	operating	pressure	pressure	
			pressure	temperature	arm-up	up		pressure	[MPa]	[MPa]	
			[MPa]	[T]	pressure	temperature		[MPa]			
					[MPa]	[K]					
L	Cavity	400	0.0031	2	0.13 @	293-2	2-293	0.15@	TBD	TBD	
	helium				293K			293K			
	enclosure				0.2 @ 2K			0.2 @ 2K			
X	Bi-phase	100	0.0031	2	0.13 @	293-2	2-293	0.15@	TBD	TBD	
	pipe				293K			293K			
					0.2 @ 2K			0.2 @ 2K			
Y	Cavity top	80	0.0031	2	0.13 @	293-2	2-293	0.15@	TBD	TBD	
	connection				293K			293K			
					0.2 @ 2K			0.2 @ 2K			
XB	Pumping	100	0.0031	2	0.13 @	293-2	2-293	0.15@	TBD	TBD	
	line				293K			293K			
		$ \land \rangle$			0.2 @ 2K			0.2 @ 2K			
E	Thermal	40 (TBD)	2.0	50-75	2.0	293-50	50-293	2.0	2.0		Heat
	shield	/ \		(20-40 on							intercept
	supply			test stand?)							
E'	Thermal	15 (TBD)	2.0	50-75	2.0	293-50	50-293				Return
	shield	N /		(20-40 on							only
	return			test stand?)							
W	Cryostat	1090	vacuum	293	vacuum	293	237-293	O.P. 0.1	I.P. 0.15	N.A.	
	vacuum	(TBD)									
	vessel										
C1	Cavity	4	0.1	4.5	0.1	293-4.5	4.5-293				Liquid
	filling										supply
C2	Coupler	15 (TBD)	0.1	4.5-293	0.1	293-4.5	4.5-293				Gaseous
	cooling										supply
C3	Cavity top	6	0.1	2	0.1	293-4.5	2-293				Liquid
	supply										supply

...a few figures still to be settled

Short cryomodule: layout sketch

CÉRN

1.7% Slope (adjustable 0-2%)

Cavity Supporting System

Transversal position specification

BUDGET OF TOLERANCE				
Step	Sub-step	Tolerances (3σ)	Total envelopes	
	Cavity and He vessel assembly	± 0.1 mm	Positioning of the	
Cryo-module assembly	Supporting system assembly ± 0.2 mm		cavity w.r.t. beam axis	
	Vacuum vessel construction	± 0.2 mm	± 0.5 mm	
Transport and handling (± 0.5 g any direction)	N.A.	± 0.1 mm		
	Vacuum pumping		Stability of the cavity	
Testing/operation	Cool-down		w.r.t. beam axis	
	RF tests	± 0.2 mm		
	Warm-up			
	Thermal cycles			

CERN

2 K Heat Loads (per β =1 cavity)

Operating condition	Value		
Beam current/pulse lenght	40 mA/0.4 ms beam pulse	20 mA/0.8 ms beam pulse	
cryo duty cycle	4.11%	8.22%	
quality factor	10 x 10 ⁹	5 x 10 ⁹	
accelerating field	25 MV/m	25 MV/m	

Source of Heat Load	Heat Load @ 2K			
Beam current/pulse lenght	40 mA/0.4 ms beam pulse	20 mA/0.8 ms beam pulse		
dynamic heat load per cavity	5.1 W	20.4 W		
static losses	<1 W (tbc)	<1 W (tbc)		
power coupler loss at 2 K	<0.2 W	<0.2 W		
HOM loss in cavity at 2 K	<1	<3 W		
HOM coupler loss at 2 K (per coupl.)	<0.2 W	<0.2 W		
beam loss	1 W			
Total @ 2 K	8.5 W	25.8 W		

Functional/Design requirements:

- Magnetic shielding: 2 level of shielding proposed
 - Ist shield @ cryo T. cryo-perm or other (A4K?). Active cooling? (No, answer today). Interesting solution of Spiral 2 cryo-module (A4K, active cooling)
 - 2nd shield @ RT: remagnetisation of low carbon steel?; mu-metal shield?
- "fast" cool-down (Q desease mitigation): 100 K/h as a goal (though not a specif requirement yet; vertical tests will tell)
- inter-cavity bellows: no active cooling, but T measurement for monitoring

Interfaces/operational functionalities:

- Cryostat windows requested for in-situ maintenance (for prototype only) → will need large windows!
 - access to tuners (motors, piezos)
 - access to HOM ports (there are 2)
- Connection to cryo distribution line. Confirmed:
 - Welded solution for connection to the cryo distribution line
 - Flexibility on connection to allow tilt change (0-2%)
- Cryo distribution line in SM18. Supply of 50K helium for thermal shield. Outstanding:
 - This needs an additional distribution line in SM18 or heating of existing supply line.
 - T, p, and He flow rates requiremnts in work
- Clarify warm-up transients and means (heater boil-off of helium, insulation vac.degradation?)
- Cryogenics with and without slope (ESSS specific)
 - Adjustable slope foreseen (0-2%)
 - Redundant cryogenic equipment \rightarrow simple to complex control possible
 - He liquid connection between cavities (hydrostatic head link) could be added if retained necessary

Instrumentation requested for cavity testing:

- He pressure gauge
- IHe level sensors (redundancy)
- temperature-sensors at strategic points (bellows, magnetic shield, HOM couplers, power coupler
- 8 HOM couplers with (broadband) feedthrus and RF cables to room temperature loads (rated 100 W) sufficiently thermally anchored
- pressure gauges for cavity vacuum (outside cryostat) and insulation vacuum
- 4 heaters inside He tank (among others used for measurement of Q-value)

Instrumentation for cryogenics/cryo-module purpose:

- Alignment Monitoring System: choice pending
 - On-line monitoring movements and vibrations of the Cold Mass (CM) during cool down and steady state operation
 - Requires referentials on helium vessel
- Measurements of HL (static/dynamic) @ 2K
 - − Pressure gauge measurement in 2K circuit \rightarrow leak-tight feed-thru
 - He flow-meter would be useful
 - T gauge in He bath (not strictly necessay) but would be useful
- Cryogenic operation instrumentation:
 - 25 W electrical heaters in helium bath: I per cavity, I in Phase Separator
 - He level gauge: I per cavity, I in Phase Separator \rightarrow needs to be in He bath so needs leak-tight feedthru
 - T gauge: I per cavity (could be outside He vessel)
- Temperature mapping of cryostat cold components: T gauges (in insulation vacuum)
 - RF coupler double-walled tube (several locations)
 - Tuner mechanical parts (normally badly thermalised, slow transients)
 - Thermal shielding temperature mapping
 - ...I estimate about 75-100 T gauges! \rightarrow wires/routing/feed-through flanges

We cannot avoid 2K bath instrumenation (P and level gauges) \rightarrow leak-tight feedthrough needed

Lines X (st.steel) and Y (Ti): transitions

Brazed and bi-metallic samples

<u> Tests Brasage Titane / Inox</u>

2) Echantillons pour tests soudures FE

3) Echantillons pour tests tractions

(Decoupe en secteurs apres tournage)

Brazing samples, (S.Mathot, EN/MME)

Tube samples from explosion bonding // (PMI, Minsk/Bielorussia)

Qualification tests:

- Mechanical properties (tensile, shear)
- Leak tests @ RT, @ LN2 T: passed
- Leak tests @ superfluid: Today's breaking news from the Cryolab:

2 samples tested: 10⁻¹² mbar/l/s

Helicoflex solution remains a proven back-up solution

Supporting system

 Mechanical/leak test mock-up in preparation at CERN to confirm "2-in-1" concept

4. Inter-cavity sliding support

Size of stiffeners increased for better results:

Inter cavity support's stiffness:

Cryostat – Cavity Support system

- Based on :
 - Coupler bi-tube supporting
- Cavities inter-connections

P.Duthil, CNRS-IPN

_~*,

Cryostat – Cavity Support system – Cavities inter-connection

Droliminary concent 2

<u>Assumptions</u> : Stainless steel tubes (Øext = 40mm ; e=3mm) and support Titanium He tank

Possibility of adding 2 chocks for

the y and z alignment procedure

November 26th 2010

Master Schedule

Start of assembly at CERN

Inter-cavity support

- Concept needs to evolve to an engineering solution:
 - Thermal transients, differential thermal contractions
 - Sliding solutions:
 - Engineering (sliding, rolling, hinged...)
 - Materials
 - Surface treatments (tribology @ cryo T under vacuum)

ESS cryomodule requirements

- Welcome to ESS in WG3
- Too early to see specific requirements
- Input expected for the SPL Short Cryomodule Engineering Specification

Summary and outlook

- Most of cryo-module requirements are now settled
- Test-specific requirements (windows, instrumentation) well advanced
- Conceptual choices made (cavity supporting, cryogenic scheme,...)
- Still needing conceptual design work: magnetic shielding, thermal shield
- 2 Vacuum vessel concepts compared:
 - Tube-type, large diameter (radial space constraint from cavity/tuner) → preferred solution
 - U type ESSS, construction complexity (=cost)
- Assembly tooling concepts in progress (depend on vacuum vessel type)
- Supporting system (inter-cavity support): detailed design starts now by CNRS
- Mock-up for testing supporting solution in preparation at CERN
- Ti-st.steel transitions: options under study
- Engineering Specification of the Short Cryo-module in preparation (end 2010)
- Preliminary design review will take place in February/March 2011
- Detailed design review September 2011
- Procurement of cryostat components in 3rd QTR 2011
- Schedule very tight!

Thank you for your attention!

Spare slides

CERN

Actively cooled RF coupler tube

SPL coupler double walled tube, active cooling to limit static heat loads

- Connected at one end to cavity at 2K, other end at RT (vessel)
- Requires elec. Heater to keep T > dew point (when RF power off)

Cavity/He vessel/tuner

Includes specific features for cryo-module integration (inter-cavity supports, cryogenic feeds, magnetic shielding ...)

Not latest design!

Coupler position: top or bottom...?

