

Intra-Beam stripping at SPL: should we be worried?

P. A. POSOCCO CERN - BE/ABP

5th SPL Collaboration meeting

How it started...

- SNS experienced uniform losses all along the Super
 - losses all along the Super Conducting part
 - The residual radiation is about 30mrem/h at 30cm
 - They calibrated the losses

Inter cryo section @ SNS

with laser wire profile system giving: $\leq 10^{-4}$ loss

First attempts to understand the problem

Scraping at low energy:

- Iower localized losses but still a uniform pattern along the linac
- Longitudinal emittance measurements:
 - found some longitudinal halo partially mitigated with a linac retuning. The simulations didn't predict it...
- High order magnetic components in the quads equipped with steerers not taken into account for the linac design:
 - sextupole: since it is proportional to the corrector current (normally very low) it is an issue only for very mismatched beams
 - dodecapole: they may excite a high order resonance at 60 degs (the design phase advance is around this value for all the linac length). Reducing the focalization helps reducing the pile-up loss component, but not the baseline.

Discovering the truth

 H^0

- After a lot of work they managed to reduce the losses down to 10⁻⁵
- Not an issue anymore in terms of power loss for SPL, but still an unsolved problem Relative particle loss [1/m]
- \Box V. Lebedev had the idea of the $\frac{1}{N} \frac{dN}{ds}$ Intra Beam Stripping and applied first to SNS and then to the H^{-} H^{-}

Η

ProjectX design

Intra-Beam stripping cross section [1]

5

Fractional Loss [1]

Envelopes

SPL main parameters

Parameter	Unit	Low Current	High Current
Energy	[GeV]	5	
E Beam power	[MW]	4	
Rep. rate	[Hz]	50	
Av. pulse current	[mA]	20	40
Peak pulse current	[mA]	32	64
Source current	[mA]	40	80
Chopping ratio	[%]	62	
Beam pulse length	[ms]	0.8	0.4
Protons per pulse		10 ¹⁴	
Beam duty cycle	[%]	4	2
Length	[m]	~500	

Beta Functions along SPL

5th SPL Collaboration Meeting

Un-normalized emittances

5th SPL Collaboration Meeting

RMS Beam Sizes

5th SPL Collaboration Meeting

Velocity distributions (beam frame)

5th SPL Collaboration Meeting

Fractional Loss along SPL [3] High Current

5th SPL Collaboration Meeting

Power Loss (High Current)

5th SPL Collaboration Meeting

14

Mitigating the IBS

15

$$\frac{1}{N}\frac{dN}{ds} = \frac{N\sigma_{\max}\sqrt{\gamma^2\theta_x^2 + \gamma^2\theta_y^2 + \theta_s^2}}{8\pi^2\sigma_x\sigma_y\sigma_s\gamma^2}F(\gamma\theta_x,\gamma\theta_y,\theta_s)$$

- Keeping the beam power constant, the power loss is proportional to the bunch peak current
- Reducing the transverse focalization increases the beam size and reduces the velocity spread, but:
 - The transverse phase advance must be higher than the longitudinal one for stability
 - The focalization must compensate at least the cavity defocusing force for every particle in the phase space (space charge has to be included)
- Reducing the longitudinal focalization:
 - Reducing the accelerating gradient / efficiency
 - Reducing the synchronous phase / non linearity
 - Reducing the cavity frequency / general linac design

What can we do for SPL?

16

Phase advance: Stability / resonances Phase advance/m:

matching

Since we don't want losses taking place because of a bd design against the theoretical predictions:

Let's reduce the peak bunch current! or, in other words, Let's go for the low-current option!

References

- 17
- V. Lebedev et al. "Intrabeam Stripping in Hlinacs", Proceedings of LINAC-2010, THP080.
- M. Chanel et al., "Measurement of the H- beam stripping cross section by observing a stored beam in LEAR", Phys. Lett. B, volume 192, number 3-4, 2 July 1987.
- 3. F. Ostiguy, private communication.
- 4. J. Galambos and Y. Zhang, various articles and talks about SNS commissioning and performances.