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Abstract

In the context of a luminosity upgrade for the LHC within the coming years, works
have started on LINAC4 to provide an infrastructure for updating the LHC sup-
plier chain. In order to achieve energy levels and particles per bunch necessary for
the expected rate of events at LHC detectors and related experiments, a project
proposal is underway for an appended Superconducting Proton LINAC (SPL) that
will run from the normal conducting LINAC4 and LP-SPL onto the LHC supplier
chain. Thus, the SPL will have two main functions: Firstly, to provide H− beam
for injection into the PS2 which is compatible with LHC luminosity. For this pur-
pose the SPL will accelerate the output beam of LINAC4 from 1GeV to 4GeV,
removing, at the same time, the necessity for PSB operation in the LHC supply
chain. Secondly, it will provide an infrastructure upgradeable to meet the needs of
all potential high-power proton users at CERN (EURISOL) and possibly neutrino
production facilities. For high-power applications of this nature the SPL will need
to provide a 5GeV beam whose time-structure can be tailored to meet the specifica-
tions of each application. As of now, the design of the SPL is planned to make use
of high-Q, 5-cell superconducting elliptical cavities pulsed at a resonant frequency of
704.4 MHz by MultiMegawatt Klystrons with a max repetition rate of 50 Hz, accel-
erating a 20/40 mA H− beam with a field of approximately 25 MV/m, depending on
the output requirements of different applications. In the context of the development
of a proposal for this conceptual design by mid-2011, this report consists on the
progress to date of a SIMULINK model that follows the design specifications and
will provide a useful means to foresee any issues that might arise with construction
of the SPL, as well as a relatively precise feel for the costs involved in terms of power
consumption and technology.
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Chapter 1

Introduction

In conjunction with the restart of the Large Hadron Collider at CERN, studies
on a luminosity upgrade for the machine started in April of 2008. The project,
sLHC-PP, is aimed at gradually increasing the luminosity to reach levels up to ten
times the original design specifications of the LHC, providing a smooth transition
onto a higher discovery potential of the synchrotron [G+10]. In order to achieve
these goals, technical improvements need to be deployed on several areas of the
CERN complex, including new focusing magnets in LHC at the experiment regions.
CMS and ATLAS, as general purpose detectors, will need to be prepared to record
higher luminosity collisions, and finally, the LHC supplier chain will be updated.
Construction has started on LINAC4 to cater for this need. The whole project has
been divided into eight areas of interest referred to as Work Packages. WP1, 2, 3
and 4 are concerned with project management and the coordination of accelerator
and detector upgrades. WP5 is investigating protection and safety issues related
to the increased radiation due to higher luminosity, WP6 has been charged with
developing the new focusing quadrupole magnets for the interaction areas of the
LHC ring, WP7 is in charge of developing critical components for the injectors
such as accelerating cavities and a hadron source, and finally, WP8 will develop
the technology necessary for tracking detectors from the power distribution point
of view. Within the scope of work package 7, Low-Level Radio Frequency (LLRF)
simulations for a new generation of pulsed electric field superconducting LINAC
have been commissioned. The idea is to provide a general idea of the possible
setbacks that may arise during construction and their solutions. This report is a
detailed description of the field stabilisation solutions when dealing with one or more
superconducting cavities driven by a single pulsed klystron from the RF point of
view.
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Chapter 2

RF Cavity Theory

Particle physics arose only a few decades ago following the creation of a device
capable of reaching far into the nucleus of an atom, and detectors equipped to
observe matter constituting the building blocks of the building blocks of atoms.
Particle accelerators have redefined particle physics and as they become increasingly
more powerful, we are able to penetrate deeper into the standard model. The idea
is to accelerate particles to imbue them with energies capable of separating matter,
and then make them crash against each other in an infinitely precise point to observe
with gigantic detectors what comes out of their collision. In order to achieve this,
we insert particles into a vacuum tube, using magnets to ensure they stay within the
vacuum, and accelerate them using electric fields contained within resonant cavities
along the tube. From the point of view of RF power, we are interested in observing
the effects of a time-varying electric field on a beam of particles travelling through
a resonant cavity powered by a valve amplifier generator (Klystron). With this
information, we can design the RF control system for a linear accelerator to suit a
particular application.

2.1 Cavity Equivalent Circuit

Figure 2.1: Pillbox cavity [Le 00]

Resonant modes of electromagnetic (EM) waves in cavities can be described by
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resonant R-C-L circuits. For the simplest case, we limit ourselves to the analysis of
a single resonant cavity, which can be closely modelled via a pillbox with perfect
electric conducting walls (a circular waveguide with closed ends). In an ideal case,
only a finite number of propagating modes, corresponding to a finite number of
frequencies will propagate within the pillbox, in the presence of losses, however,
cavity modes no longer have a sharp delta function at particular frequencies, but a
narrowband peak appears instead. A measure of the sharpness of this peak observed
after an external excitation is the quality factor (Q) of that particular mode.
Q is defined as the ratio of time-averaged energy W stored in the cavity to the
energy loss per cycle.
Q0 = ωW

Pd
where Pd is the dissipated power in the cavity.

Ignoring the effects of losses due to vacuum impurities and surface irregularities
(drift tubes) we calculate Q by integrating the power loss of wall currents over the
cavity surface and the stored energy over the volume of the cavity

Pd =

∫
δV

P
′

ddA =
1

2

∫
δV

√
ωµ

2κ
|Htan|2dA (2.1)

W =

∫
V

wdV =
1

2

∫
V

(
ε

2
|~E|2 +

µ

2
|~H|2

)
dV =

ε

2

∫
V

|~E|2dV (2.2)

where P
′

d is the energy loss in the cavity walls per unit area due to surface currents,
w is stored energy within the cavity, and κ is the conductivity of the material
[WKS+00]. The Q factor as defined above is one of the main characteristics of an
accelerator cavity, and together with the resonant frequency and shunt impedance, it
is possible to describe the cavity completely from an electrodynamics point of view.
The resonant frequency of a cavity depends mainly on its shape and it is thus too
complex to calculate analytically for all but the simplest of shapes, thus it is found by
numerical or experimental methods and usually quoted by designer or manufacturer.
The shunt impedance of an accelerating cavity relates the voltage between two points
in the cavity over (e.g. between drift tubes) to the power dissipated in the cavity
walls:

Rsh =
U2

2Pd
(circuit) (2.3)

For LINAC purposes, the shunt impedance definition is multiplied by a factor of two;
therefore it is important when defining a shunt impedance to specify the convention
applied. To calculate the shunt impedance, in any case we find the voltage between
two points U = |

∫ z2
z1
Ez(z)|.

This definition does not take into account the passage of a beam of charged particles
and its effect on the cavity voltage and is related to the effective shunt impedance
by Rsh,eff = RshT

2, where the transit-time factor T is given by

T =
|
∫ z2
z1
Ez(z)eikzzdz|

|
∫ z2
z1
Ez(z)dz|

(2.4)
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Rsh is useful to define the characteristic impedance of a resonant cavity, which is
defined as

Rsh

Q
=

1

2ωW

(∫ z2

z1

|Ez(z)|2dz
)

(2.5)

This is a very useful quantity as it depends only on the geometry of the cavity. Going
back to our R-C-L circuit, we know that when a cavity resonates on a given mode,
the time-averaged energy stored in the electric field equals that in the magnetic field.
Within an RF period, the energy oscillates between magnetic and electric field as is
the case with an L-C pair. R was defined before and it models the effective shunt
impedance due to energy dissipation of the cavity walls [Le 00].

Figure 2.2: Cavity equivalent circuit

If we therefore think of the capacitance as the effect of the electric field on the cavity
and the inductance as related to the magnetic field, we find that the average stored
energy in the electric and magnetic fields respectively is given by

WsE =
1

4
CV 2 WsM =

1

4
LI2 (2.6)

where
ε

4

∫
V

|E|2dV =
µ

4

∫
V

|H|2dV

At resonance, the total average energy stored is then the addition of both the mag-
netic and electric:

Ws = WsE +WsM = 2WsE =
1

2
CV 2 (2.7)

If we take the power dissipated by the equivalent shunt resistance, bearing in mind
ω0 = 1√

LC
we find Pd = 1

2
V 2

R
and therefore (CIRCUIT) Q0 = ω0RC.

Thus, with the knowledge of the quality factor, resonant frequency and the shunt
impedance, it is possible to construct an equivalent circuit for the resonant cavity.
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2.2 Coupling Between RF Generator, Cavity and

Beam

Figure 2.3: Cavity coupled to beam and generator [Sch98]

Until now, we have concentrated on the behaviour of a resonant cavity obtained
from a closed pillbox with perfectly conducting walls. We are now interested in the
effects on the cavity of coupling to a generator and the passage of beam. We will
now observe how the generator transmission line affects the quality factor of the
cavity and how beam passage will induce a drop in the cavity voltage. Thus we
introduce the concept of the cavity to generator coupling factor

β0 =
Q0

Qext

(2.8)

which gives rise to the loaded quality factor QL

1

QL

=
1

Q0

+
1

Qext

(2.9)

In superconducting cavities in particular, the loaded Q is virtually equal to the
external Q as the unloaded Q is much greater than the external. This means the
generator to cavity coupling will be of particular importance for the efficient perfor-
mance of the system.

2.2.1 Steady-State Analysis

To start off, we assume steady-state voltages and currents. In figure 2.4, the beam is
represented as a current source and the cavity, as previously shown, is equivalent to
an L-C-R block, in this case coupled to a transmission line with complex impedance
Z, with an incident current wave (towards the cavity) Ig and a reflected wave Ir
[Tuc04].
The generator emits a wave with frequency ω, which is not necessarily equal to the
cavity resonant frequency ω0. We assume all variables are proportional to eiωt. In the
case of imperfect tuning, the frequency difference between the resonant frequency
and the generator frequency can be described as a mismatch between the generator
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Figure 2.4: Steady-state cavity [Tuc04]

and the cavity angle in phasor terms. We can define the tuning angle between the
generator current and cavity voltage as

tan Ψ = 2QL
∆ω

ω

for small ∆ω.
From transmission line theory, we know V = Z(Ig + Ir) and therefore Ir = V

Z
− Ig.

From the circuit and the above equation, we get

ILCR = Ig − Ir − Ib,RF = 2Ig − Ib,RF −
V

Z
(2.10)

The current across the L-C-R block is also equal to the individual currents flowing
through the passive components. So we can also say (j and i both refer to

√
−1)

ILCR = IC + IL + IR = V

(
1

jωL
+ jωC +

1

R

)
(2.11)

and equating both sides, we get

V

(
jωC

(
1− 1

ω2LC

)
+

1

R
+

1

Z

)
= 2Ig − Ib,RF (2.12)

If ∆ω = ω0 − ω and ∆ω � ω and , we can say that , and the equation becomes

V

(
− i2∆ωC +

1

R
+

1

Z

)
= 2Ig − Ib,RF (2.13)

where ω0 = 1√
LC

.
Now we want to express this in cavity parameters. To find expressions for C, R
and Z, we use the capacitor voltage-capacitance relation, and the effect of a charge
travelling through a resonant cavity (note that all parameters are specified in their
LINAC definition):
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∆V =
q

C
=
qω

2

(
R

Q

)
(LINAC) (2.14)

C =
2

ω(R/Q)
(LINAC) (2.15)

Using this and the equivalent cavity values for the shunt impedance R and the
external impedance Z:

R =
Q0

2

(
R

Q

)
(LINAC) (2.16)

Z =
Qext

2

(
R

Q

)
(LINAC) (2.17)

we find the circuit equation using cavity values to be given by the following equation:

V

(
− i 2∆ω

ω(R/Q)
+

1

(R/Q)

(
1

Q0

+
1

Qext

))
= Ig −

1

2
Ib,RF (2.18)

The RF beam current is a complex quantity, and as such can be expressed in terms
of real and imaginary parts. For simplicity we can define the complex phase of all
waves such that the cavity voltage V is always purely real (this is not the case for
the model as shown later). Thus the cavity voltage is at the zero degree point in
the complex plane. The synchronous angle φs is the angle of the RF voltage when
the beam arrives. With LINAC machines, as is the case with electron synchrotrons,
we generally operate close to maximum power transmission. This means that the
synchronous angle is defined from the peak value of the RF voltage, i.e φs, LINAC =
0◦. when the cavity voltage and the beam pulse are in-phase, as opposed to the
proton synchrotron case, in which the synchronous angle is taken with 90 degrees
of difference. Using the LINAC convention:

Ib,RF = |Ib,RF |(cosφs − i sinφs) (2.19)

The complex Fourier spectrum of a bunch train passing through the cavity is given
by a frequency train which, in case of infinitely short bunches, has equal value for
all frequencies f = (−∞,∞). The corresponding real spectrum has no negative
lines and corresponding frequencies add up, except for the DC term. Hence, the RF
terms are twice the DC term, in the case of infinitely short bunches.
Thus Ib,RF = 2Ib,DC , except for finite bunches, in which case the factor 2 will become
lower for higher frequency components. To take this effect into account we add a
relative bunch factor fb that is normalised to 1 for infinitely short bunches, so

Ib,RF = 2Ib,DCfb(cosφs − i sinφs) (2.20)

Substituting back into the previous equation, we find complex expressions for the
generator and the reflected powers:

11



Figure 2.5: Fourier spectrum relation between RF and DC beam current

Ig =

[
V

(R/Q)QL

+ Ib,DCfb cosφs, LINAC

]
−i
[
Ib,DCfb sinφs, LINAC + V

2∆ω

ω(R/Q)

] (2.21)

Ir =

[
V

(R/Q)

(
1

Qext

− 1

Q0

)
− Ib,DCfb cosφs, LINAC

]
+i

[
Ib,DCfb sinφs, LINAC + V

2∆ω

ω(R/Q)

] (2.22)

All equations above are defined using the LINAC convention for synchronous angle
and R/Q. The LINAC definition for power, using peak values for current is

Px =
1

4
RLINAC|Ix|2

and therefore

Pg,r =
1

4
(R/Q)Qext|Ig,r|2 (2.23)

We can also find optimum detuning and loaded quality factor for the superconduct-
ing LINAC case using

∆ωopt
ω

=
−Ib,DCfb sinφs(R/Q)

2V
(2.24)

QL,opt = Qext,opt =
V

(R/Q)Ib,DCfb cosφs
(2.25)

2.2.2 Transient Analysis

The superconducting proton LINAC will make use of pulsed generators, and so does
the model developed for it. Hence, the scope of the project is not limited to steady-
state analysis, and so it is that we now let go of our initial assumptions and plunge
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into the realm of transient analysis. We begin again from the externally driven
L-C-R circuit. This time we include the external load in the loaded impedance
[Sch98].

Figure 2.6: Cavity-beam interaction [Sch98]

RL = R||Zext (2.26)

Applying Kirchhoffs current rule

Icav = IRL + IC + IL

and the formulas

İL = V/L ˙IR = 2V̇ /RL
˙IC = CV̈

and translating into cavity values

1

RLC
=

ω0

QL

1

LC
= ω2

0

we find

V̈ (t) +
1

RLC
V̇ (t) +

1

LC
V (t) =

1

C
İ(t) (2.27)

V̈ (t) +
ω0

QL

V̇ (t) + ω2
0V (t) =

ω0RL

QL

İ(t) (2.28)

The driving current Ig and the Fourier component of the pulsed beam Ib,RF are
harmonic with eiωt. We now separate fast RF oscillation from the slowly changing
amplitudes and phases of real and imaginary (I/Q) components of the field vector:
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V (t) = (Vr(t) + iVi(t))e
iωt

I(t) = (Ir(t) + iIi(t))e
iωt

(2.29)

We insert this into the differential equation 2.28 and we end with the result

˙VRE + ω1/2VRE + ∆ωVIM = RLω1/2IRE
˙VIM + ω1/2VIM −∆ωVRE = RLω1/2IIM

(2.30)

Where ω1/2 = ω0

2QL
is the half bandwidth of the cavity. The driving current in

steady-state is given by I = 2Ig + Ib,RF . In the case of on-crest acceleration (zero
synchronous angle) for a train of infinitely short bunches passing through a cavity
on resonance, we can approximate the resonant frequency component of the beam
current to twice its DC value I = 2(Ig− Ib,DC) , bearing in mind the 180 phase shift
of the beam. Filling a cavity with constant power results in an exponential increase
of the cavity voltage

Vg = RLIg

(
1− e

−t
τ

)
, where Vg represents the generator-induced cavity voltage and the LINAC conven-
tion is taken for the loaded impedance. Similarly, a beam current injected at time
tinj results in an opposite voltage gradient within the cavity

Vb = −RLIb,DC

(
1− e−

1
τ

(t−tinj)
)

where Vb represents the beam-induced cavity voltage and τ = 1
ω1/2

= 2QL
ω0

is the

filling constant of the cavity.
The total cavity voltage is a superposition of the beam-induced and generator-
induced voltages.

Vcav(t) = RLIg

(
1− e

−t
τ

)
for t < tinj (2.31)

Vcav(t) = RLIg

(
1− e

−t
τ

)
−RLIg

(
1− e

−(t−tinj)
τ

)
for tinj < t < tOFF (2.32)

In the case of superconducting cavities, the generator power is almost entirely trans-
ferred to the beam. The injection time can then be chosen to arrive at an immediate
steady-state condition. In other words, if we time the beam in such a way that the
positive voltage gradient induced by the generator is equal to the negative voltage
gradient induced by the beam on the cavity, the cavity voltage will remain constant
during beam loading. This can be achieved, for optimal matching and Ig = αIb,DC ,
when the cavity field has reached 1− 1

α
of its maximum:

tinj = lnα× τ (2.33)
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Vcav(t) = RLIg

(
1− e−

t
τ

)
−RLIb,DC

(
1− αe−

t
τ

)
Vcav(t) = RLIg

(
1− e−

t
τ

)
− RLIg

α

(
1− αe−

t
τ

) (2.34)

Vcav = Vmax

(
1− 1

α

)
, where Vmax = RLIg (LINAC)

Figure 2.7 shows the effect on the cavity voltage of an infinitely short bunch train,
with an average current Ib,DC passing through a cavity at the right injection time
tinj such that the generator-induced gradient is cancelled by that induced by the
beam.

Figure 2.7: Cavity voltage gradients induced by generator and beam

Each infinitely short bunch is seen as an instant drop in the cavity voltage, while
the generator-induced voltage has a continuous effect on the cavity. When both the
beam and generator are OFF, the cavity voltage decays exponentially.
It is important to note that the above description is somewhat different in the case
of out of phase beam loading. It is important to bear in mind that when the beam
arrives with a certain synchronous angle, the beam current is expressed by

Ib,RF = |Ib,RF |(cosφs − i sinφs) (2.35)

and similarly, the generator current is given by

Ig =

[
V

(R/Q)QL

+ Ib,DCfb cosφs, LINAC

]
−i
[
Ib,DCfb sinφs, LINAC + V

2∆ω

ω(R/Q)

] (2.36)
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This means that the relationship between Ig and Ib becomes

Ig = α Ib,DC

where the underlining represents complex quantities. This means that the injection
time would have to be complex in order to obtain flat-top operation, which is, of
course, physically impossible. In practice this means that the cavity voltage flat-
top operation can be optimised with respect to the real part by means of optimal
coupling and with respect to the imaginary part by detuning the cavity. For the
purpose of our analysis, the focus is on the real part and thus the effects of flat-top
drift during beam loading due to reactive effects are in practice curbed by a fast
feedback loop in both magnitude and phase, though other methods life pre-detuning
or half-detuning have proven successful in the past.

2.3 Beam loading Theorem

Until now, the passage of the beam through a resonant cavity has been represented
by a DC current source pulled from the cavity. This is a good approximation and
works well to observe the beam effect on the magnitude of the cavity voltage. In
reality, however, beam loading consists on the effects of several single bunches (mod-
elled with infinitely small width) accelerated by a resonant cavity. These bunches
not only have an effect in the cavity voltage magnitude, but also its phase. When a
beam is perfectly in-phase with the RF voltage in a tuned cavity, the cavity voltage
will stay in tune during beam passage, while its amplitude decays, however, the
transient effects of a detuned cavity and the beam synchronous angle remain to be
discussed. As we will see during the course of this paper in both theory and practice,
a beam that arrives at the cavity with a synchronous angle φs will asymptotically
pull the cavity voltage towards this angle (note that we use the LINAC definition
for φs). Consider a point charge crossing an initially empty cavity. After it has
passed, a beam voltage Vbn remains in each resonant mode (for simplicity we will
consider the main mode only). What fraction of Vbn does the charge “see”? We
will prove this to be 1

2
Vbn. This result is called the fundamental theorem of beam

loading [Wil78]. The fundamental theorem of beam loading relates the energy loss
by a charge crossing the cavity to the electromagnetic properties of resonant modes
in the cavity computed in the absence of field. By superposition, the beam-induced
voltage in a resonant cavity is the same whether or not there is a generator-induced
voltage already present. We observe the effect of a charge passing through a cavity,
being accelerated by generator-induced field present within said cavity. A single
bunch passing through a cavity excites a field within it. Taking into account the
fundamental resonant mode only, the excited field can be expressed as an exponen-
tially decaying sine wave oscillating at the resonant frequency of the cavity ω0. In
vector terms, the power delivered to the beam by the RF, taking into account the
beam-induced cavity voltage is given by

Pb,eff = −(~Vg + ~Vb) • ~Ib,RF
where the generator-induced voltage is not necessarily in-phase with the beam cur-
rent component at the resonant frequency of the cavity. Vb represents the effec-
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tive beam-induced voltage seen by the beam. To find this voltage, the cavity gap
impedance (in transient mode) can be represented by a single capacitor

1

C
=
Rsh

Q0

ω0

and so the bunch-induced voltage in the cavity is given by

Vbunch =
qb
C

=
qb
2
×
(
R

Q

)
(LINAC)× ω0 (2.37)

The energy lost by the bunch and stored in the cavity (Capacitor) is then

W =
1

2
CV 2

bunch =
1

2
qbVbunch (2.38)

The power received by the beam is then the vector sum of the generator-induced
power and the beam self-induced power.

Pb,eff = −~Vg • ~Ib,RF −
1

2
~Ib,RF • ~Vbunch = −(~Vg +

1

2
~Vbunch) • ~Ib,RF (2.39)

and so, returning to our original result for the power delivered to the beam, it is
clear that

~Vb =
1

2
~Vbunch (2.40)

The beam only “sees” half of its own induced voltage in the cavity [Bou86].

Figure 2.8: Effect of single bunch passage on cavity voltage [Wil78]

Now we are interested in computing the transient variation of the cavity voltage due
to the passing of a periodic bunch train (with infinitely small bunches). Consider
first an undriven cavity with resonant frequency ω0 and a filling time constant τ .
Suppose the cavity is initially charged to Vcav(0), and this voltage then decays ex-
ponentially with the filling constant, while rotating at the RF frequency ω, which
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is not necessarily the resonant frequency, i.e. the reference frame for the phasor
diagram is chosen as the RF driving frequency.
The time variation in magnitude and phase of the cavity voltage is given by

Vcav(t) = Vcav(0)e
−t
τ ejt∆ω

where ∆ω = ω0−ω,and the tuning angle is the angle between the generator current
and the cavity voltage and related to the frequency detuning by

tan Ψ = τ∆ω

These equations, in essence, explain that the RF field within an undriven cavity
with a resonant frequency that differs from the RF frequency will rotate in phase as
it decays exponentially. Furthermore, the rotation in time will be proportional to
the frequency detuning (between RF and resonant frequencies). This effect is shown
in figure 2.9.

Figure 2.9: Voltage decay in detuned cavity [Wil78]

If we now include the effect of several bunches and the generator voltage, note that
the zero degree phase is set as the positive direction of the bunch-induced voltage, we
observe the effect of both the frequency detuning and the synchronous angle.If the
cavity voltage starts in-phase with the generator voltage, we can see how each bunch
passage pulls the cavity voltage towards the synchronous angle (shown in figure 2.11
with the zero phase angle set for the generator current). The spiral path in the
figure 2.10 shows the cavity voltage driven by the generator. The cavity voltage
tends asymptotically towards the generator voltage, but the beam passage opposes
this effect, creating flat-top operation if timed right. The path is not straight, as
shown in figure 2.9 due to the mismatch between cavity resonant frequency and RF
generator frequency. Interestingly enough, the synchronous angle and the tuning
angle can be such that their combined effects are somewhat cancelled, depending
on the magnitude of the bunch-induced voltage in the cavity and the frequency
of bunch passage in regards to the generator-induced voltage and the filling time
constant of the cavity. In the case above, the time between bunch passages is such
that Vc(t) returns to V −c after each bunch passage. If the tuning angle is zero, and
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Figure 2.10: Overall effect of beam loading on detuned cavity [Wil78]

the injection time is such that the magnitude of the beam-induced cavity voltage is
equal to that of the generator-induced voltage, the phase change of the total cavity
voltage will be driven by the beam current, as we will observe in the results section.
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Figure 2.11: Generator-beam power interaction in tuned cavity
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Chapter 3

RF Control of a 5-Cell 704.4 MHz
Resonant Cavity

3.1 SPL Parameters and Power Considerations

LINAC4 and the SPL are being developed as a possible generic solution to many
of CERNs needs in terms of high-power beam experiments. Perhaps one of the
most important features of the SPL, in order to meet these needs, is its flexibility.
The SPL is planned to accelerate H− ions firstly for the purpose of injecting to the
LHC supplier chain, that will include an upgrade to the proton synchrotron and the
proton-synchrotron booster referred to as PS2. The second goal of the SPL is to
create a beam that is upgradeable to feed all of CERNs high power proton users or
neutrino-production facilities. The SPL, as of now, is planned to accelerate a 40mA
beam pulse lasting 0.4 ms with a repetition rate of 50 Hz at high current operation,
and a 20 mA beam lasting 0.8 ms at low current. The beam bunches arrive with
a frequency of 352.2 MHz from LINAC4. The couplers from the RF generator to
the resonant cavity will be optimised for 40 mA, where a movable-coupler scheme
has been dismissed after budget considerations to favour a slight increase in 20 mA
operation power to compensate for the power reflection due to the transmission line
mismatch.
The power per cavity value on figure 3.1 is an approximate number. In addition to
these specifications, the beam is expected to travel with a 15 degree synchronous
angle with respect to the cavity voltage (LINAC convention). This implies that not
all of the power delivered to the cavities will be absorbed by the beam, even in
the case of a matched coupler. This means the power will need to be raised above
1 MW. The 20 mA case has a similar result due to both coupling mismatch and
synchronous angle. As of now, the proposed solution is of maintaining a 25 MV/m
accelerating electric field, corresponding to a voltage of 26.6 MV within the cavity.
In order to do this the injection time for 20/40 mA operation needs to be calculated
as shown below. The total power needed for each scenario can then be specified to
match the voltage required at the calculated injection time [Hof09].
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Figure 3.1: General SPL parameters [Ger07]

Figure 3.2: Transient power distribution [Hof09]
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For 40 mA operation, the following parameters apply:

fRF = 704.4 MHz

Ib,DC ' 40 mA

φs = 15◦ (LINAC)

Eacc = 25 MV/m

lengthcav = β × λRF
2
× 5 (5 cell, π mode) = 1.064 m

Vacc = Eacc × lengthcav = 26.6 MV

Pb = Vacc × Ib,DC × cosφs = 1.0285 MW

R
Q

= 525Ω (LINAC)

QL = Vacc
R
Q
×Ib,DC×cosφs

= 1.3113× 106

RL = QL
R
Q

= 688 MΩ (LINAC)

Ig = Vacc
RL

+ Ib,DC cosφs = 77.3 mA

α = Ig
Ib,DC cosφs

= 2

τfill = 2QL
ωRF

= 0.5926 ms

tinj = τfill lnα = 0.4108 ms

tpulse = 0.4 ms

With a power consumption given by Pfwd = 1
4
RL|Ig|2 = 1.0286 MW.

Now, if we recall the general equation for the generator current from the steady-state
analysis of the theory, we find

Ig =

[
V

(R/Q)QL

+ Ib,DCfb cosφs, LINAC

]
−i
[
Ib,DCfb sinφs, LINAC + V

2∆ω

ω(R/Q)

] (3.1)

It is thus possible to compensate for reactive beam loading

Preactive BL =
1

4
|Ib sinφs|2 (3.2)
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This value can be added on the power budget or corrected by detuning the cavity
as we can see from the equation above, otherwise the feedback loop will have to
compensate for its effects. In these cases, it is also possible to use a half-detuning
method, which means the cavity is detuned in between the optimum tuning for
filling and beam loading. This will result in compensation being necessary during
both filling and beam loading, but at a lower power level.
For the 20 mA case, the same reasoning applies. For the matched case, power con-
sumption is halved while the optimum loaded quality factor and injection and filling
times double. This would imply, however, that the loaded quality factor needs to
vary between 40 mA and 20 mA operation, which involves using variable coupling
between generator and resonant cavity. In practice, this is bulky and very expensive.
It is more viable to slightly increase the generator power requirements during mis-
matched operation. So, if the loaded quality factor is matched for 40 mA operation,
the operating values are as follows:

Ib,DC ' 20 mA

Pb = Vacc × Ib,DC × cosφs = 514 kW

QL = 1.3113× 106

Ig = Vacc
RL

+ Ib,DC cosφs = 58 mA

α = Ig
Ib,DC cosφs

= 3

τfill = 2QL
ωRF

= 0.5926 ms

tinj = τfill lnα = 0.6510 ms

Iref = V acc
R
Q
Qext
− Ib,DC cosφs = 19.3 kW

Pref = 1
4
RL|Iref |2 = 64 kW

If we now compare the power requirements with matched operation, for one cavity
with 40 mA beam and for two cavities with 20 mA beam respectively, the powers
are

P40 mA = 1.029 MW

P2×20 mA = 1.156 MW

This entails a 12.3% power increase for the mismatched case.

3.2 Sources of Perturbation

Due to injection tolerances and stability requirements for the SPL injection onto
the LHC supplier chain and other high-energy proton users at CERN, the cavity
voltage magnitude and phase have been specified to very accurate values. According
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to SPL specifications, the voltage magnitude deviation must be below 0.5% of the
total value and its phase deviation must not exceed 0.5 degrees. This is clearly
a challenge as the constraints are quite restrictive. It is therefore important to
anticipate and analyze the main possible sources of perturbation and their effects
on the overall performance of the system. In this way, two main error causes have
been identified; namely Microphonics and Lorentz Force Detuning. Superconducting
cavities are made of a thin niobium wall and are therefore subject to mechanical
deformations due to various external factors. One such factor is the pressure of the
liquid helium bath. Other factors can include structural resonances or even external
factors such as outside temperature or ground movement. The overall effect is not
easily modelled due to the many possible environmental factors that cause cavity
deformations. The effects of this deformation due to liquid helium bath pressure are
usually referred to as microphonics [LP07]. The detuning may be mathematically
described as a sum of slowly modulated harmonic oscillations:

∆ωµ(t) =
N∑
i

∆ω̄i(t) sin (ωit+ φi) (3.3)

Perhaps a more important source of frequency detuning arises when resonant cavities
are filled with very high fields. When a resonant cavity, made of thin niobium is
filled with a high-power electric field and its magnetic counterpart, the fields exert a
pressure on the cavity walls that can result in mechanic deformation. This is known
as Lorentz Force Detuning. In mathematical terms, the wall pressure due to electric
and magnetic fields within the cavity is given by

P ~E, ~H =
1

4

(
µ0| ~H|2 + ε0| ~E|2

)
(3.4)

This gives rise to a change in volume, and thus a change in resonant frequency of
the cavity given by

ω0 − ω
ω0

=

∫
∆V

(
ε0| ~E|2 − µ0| ~H|2

)
∫
V

(
ε0| ~E|2 + µ0| ~H|2

) (3.5)

the integral of the change in volume over the total volume [Sch98].
In the case of a pillbox-like cavity, the pressure is concentrated in regions with high
field. In this way, the electric field close to the irises (drift tubes) contracts the
cavity, while the magnetic fields along the equator expand it. This results in a more
disk-like cavity which results in a negative frequency change. Thus the frequency
deviation is found to be proportional to the negative square of the accelerating
field: ∆f0 = −K × E2

acc, where K is referred to as the Lorentz detuning factor in
Hz/(MV/m)2 . Since the electric field varies and the cavity walls have an inertial
mass, Lorentz detuning has a transient variation that can be seen as low frequency
damped oscillations with the cavitys mechanical resonant modes. If we now take into
account the main mechanical mode, we arrive at a 1st order differential equation:
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τm∆ω̇(t) = −(∆ω(t)−∆ωT ) + 2πK · E2
acc(t) (3.6)

This equation describes the time-variation of the frequency deviation with time. τm
is the mechanical damping time constant and ∆ωT is a frequency shit due to an
external mechanical excitation (such as a piezo-electric tuner).

3.3 Feedback and Feed-Forward Control

Until now, the sources of error have been identified and the need for a stable cavity
voltage in terms of both magnitude and phase has been stressed. In order to effec-
tively control a resonant cavity to meet the necessary specifications, it is necessary
to predict errors using mathematical descriptions for the sources identified, and also
develop an automated system that can deal with unforeseen variations. The most
widely used control technique and one that applies to our necessities is that of neg-
ative feedback. The idea is to control a systems output by comparing it to a desired
setpoint and feeding the error back to the input dynamically.

Figure 3.3: Negative feedback operation

The solution used in this particular implementation of the cavity control is done
using I/Q components of the signal (refer to chapter 4). The advantage of this is
that phase and magnitude can be controlled simultaneously using a setpoint in I/Q
description. Common feedback controllers use mathematical information of the error
signal e(t) to determine a signal to be fed to the system input. In the context of this
report, PID feedback is of interest. PID feedback stands for Proportional-Integral-
Derivative Feedback. This means that not only a fraction of the error signal is fed
back to the input, but also of its derivative and integral. The proportional value
determines a reaction to the current error, the integral value determines a reaction
to the cumulative error, and the derivative term determines a reaction based on the
rate at which the error is changing. Together, they form a very powerful means for
controlling the output of a system [wik] [AM]:

OutFB = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (3.7)
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A high proportional gain Kp results in a large change in the output for a given input
change. If the proportional gain is too high, the system can become unstable. In
contrast, too small a gain can result in poor control effort with respect to the output
changes. Pure proportional control, furthermore, will not settle to the setpoint value,
but it will retain a steady-state error that depends on the proportional gain and the
system (cavity) gain. It is the proportional term that usually contributes the bulk
of the control effort. The control contribution from the integral term is proportional
to both the magnitude and the duration of the error. Summing the instantaneous
error corrects the accumulated offset that results from pure proportional gain. The
integral gain Ki accelerates the process towards the setpoint and eliminates the
steady-state error. However, a high integral gain can cause the present value to
overshoot responding to accumulated errors from the past. The rate of change
of the system output error is calculated by determining its slope over time. The
derivative terms effect is most noticeable close to the controller setpoint, as the rate
of change varies the most. Derivative control is used to reduce the magnitude of
integral overshoot and improve closed-loop stability. Too much differential gain Kd,
however, can result in amplification of noise and instability. The overall effect on a
step-change in the output can be observed in figure 3.4 [AM].

Figure 3.4: Effects of PID gain on output control performance [AM]

Feed-forward is the opposite of feedback, as you might suspect from its name. The
idea is to prevent a foreseen error. To do this, the opposite effect is purposely fed to
the system to counteract the known error at the time it arises. Combined feedback
and feed-forward control can significantly improve performance over simple feedback
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architectures when there is a major disturbance to the system that can be measured
beforehand [Ore07].

Figure 3.5: Feedback and feed-forward complementary control

To eliminate the effect of the measured disturbance, we need to choose Qff so that
Pd − PQff = 0, where P is the effect of the klystron and the cavity on the system.
We can do this directly or by using an adaptive scheme. The idea in the context of
SPL cavity control is to develop a model for a digital filter that uses ideal statistics to
control the output. For this solution, the principles of Kalman filters are appealing.

3.4 Kalman Filtering

When the need arises for adaptive feed-forward, we need to develop a practically
viable scheme to achieve the best possible efficiency and accuracy. The Kalman filter,
in the presence of noisy measurements of a known system, is an ideal optimiser with
respect to most criteria in advanced signal processing, and introduces almost no
delay in the system as it implements a recursive algorithm. The Kalman filter finds
the best possible fit out of a noisy measurement of a known system. This means
we can estimate with the minimum possible error the real output of a system from
which we have a noisy measurement. The idea is to characterise the system using
previous knowledge of its dynamics and compare an estimate given from that model
to a real (noisy) measurement taken from the real process. Provided we have an
appropriate model for the estimating part of the filter and the statistical description
of the system and measurement noises, we can fit the best estimate of the real output
using our model, the noise corrupted measurement, and, of course, some very clever
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mathematics. Now, it is possible to write whole books on the underlying processes
of Kalman filtering and its applications, but we will concentrate on the applications
that are relevant to our needs, namely adaptive feed-forward. The secret to Kalman
filtering stems from the power of iteration; it is possible to asymptotically reach a
best fit by perpetuating trials towards a given value, propagating the probability
density function of the estimate, which narrows with each trial [Hof07]. The Kalman
filter works with systems that fulfil the following assumptions:

1. Noise is white Gaussian.

2. System is linear.

It might seem like an overly restrictive set of assumptions, but in signal processing,
the fact is this is usually the case. Linear systems are common for many real appli-
cations, and when a nonlinear system is more appropriate, the standard approach
is to linearize about a certain point of interest. White noise has equal power across
its whole frequency spectrum, which makes it of infinite power. However, bandpass
characteristic of all real systems will limit the noise power, and even when the noise
is not equal for all spectra, we can use a shaping filter to whiten the noise, adding
the shaping filters characteristics to our system model within the Kalman filter.
The Gaussian noise assumption can be defended using the central limit theorem. In
many applications, measurement and process noise comes from a variety of sources,
making their overall effect close to that of Gaussian noise. This means the mode,
median and mean of the noise probability density function are all the same value and
thus the Kalman algorithm optimises with respect to all three [May79a]. Consider
a system governed by the linear stochastic differential equation

ẋ(t) = F (t)x(t) +B(t)u(t) +G(t)w(t) (3.8)

from which we take a measurement at time t

z(t) = H(t)x(t) + v(t) (3.9)

With:

x(t) = system state vector (output).
u(t) = control functions vector.
w(t) = white Gaussian model noise vector with zero mean and variance Q.
F (t) = continuous system dynamics matrix.
B(t) = control input matrix (system dynamics).
G(t) = noise input matrix, equal to 1 for our purposes.
z(t) = measured output vector.
H(t) = measured output matrix, equal to 1 for our purposes.
v(t) = measurement noise vector with zero mean and variance R.

The Kalman filter, for our particular application, is defined a discrete-time optimal
estimator. In order to characterise the hardware necessary to build the filter, it is
necessary to investigate the discrete-time difference equation of the system.
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The solution for this differential equation at time t is given by:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(t0)dτ +

∫ t

t0

Φ(t, τ)G(τ)dβ(τ) (3.10)

With:

x(t0) = x0.
β(τ) = Brownian motion process [May79b].
dβ(τ) = w(τ)dτ .
Φ(t, t0) = state forward transition matrix.

Φ(t, t0) satisfies the differential equation,

d
(
Φ(t, t0)

)
dt

= F (t)Φ(t, t0)

Φ(t0, t0) = I

(3.11)

For a certain sampling time ∆t, we can rewrite the process and measurement equa-
tions as:

x(tk+1) = Φ(∆t)x(tk) +Bd(tk)u(tk) + wd(tk)

z(tk+1) = H(tk+1)x(tk+1) + vd(tk+1)
(3.12)

With:

Bd(ti) =
∫ ti+1

ti
Φ(ti+1, τ)B(τ)dτ is the discrete control input matrix.

wd(ti) = discrete process noise vector, with mean and variance given by:

E{wd(ti)} = 0
E{wd(ti)wd(ti)T} = Qd(ti) =

∫ ti+1

ti
Φ(ti+1, τ)G(τ)QGT (τ)ΦT (ti+1, τ)dτ

vd(ti) = discrete measurement noise vector, with mean and variance given by:

E{vd(ti)} = 0
E{vd(ti)vd(ti)T} = Rd(ti)

In practice, Q and R are the tuning parameters of the Kalman filter and are often
set experimentally by trial and error.
The expressions for the forward transition, control input, and noise matrices can be
further simplified using the following expressions:

Φ(ti+1, ti) ' I + F (ti)(ti+1 − ti)
Bd(ti) ' B(ti)dt
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This analysis tells us that all that is necessary to model a system for Kalman filtering
applications is:

� A linear system corrupted with white Gaussian noise or the best approxima-
tion.

� A differential equation relating the measurable variable or state of interest to
its derivative.

� Knowledge of the initial conditions of the system.

Now we can concentrate on the Kalman filtering part of Kalman filtering. For the
scope of this project, it is unnecessary, as mentioned previously, to look into the
exhaustive proof of the Kalman algorithm. For a more complete explanation of the
Kalman filter, refer to [May79a] [May79b].
The process of estimation of a particular state can be separated into two steps; the
time update and the measurement update [WB06]. During the time update stage, a
prediction of the next value is calculated using our knowledge of the system and the
previous outputs. The information of the last outputs propagates through an error
covariance matrix that contains information about the innovation or amount of new
(unpredicted) data of each new value. In other words, error equals innovation.

E{xk} = x̂k

E{xk − x̂k} = Pk
(3.13)

Pk is the expected value of the innovation; it contains information about how far
from the real value the prediction x̂k is at time/sample k.
The measurement update stage incorporates the information given by the noisy
measurement of the system of interest, weighting it more or less heavily depending
on its accuracy. In order to do this, a matrix known as the “Kalman Gain” becomes
a part of the algorithm. The Kalman gain (K) is the main feature of the filter; it
decides what factor of information to take from the real measurements as opposed
to the model prediction. Once the Kalman gain is calculated, the new (measured)
value is incorporated to the prediction to create an estimate of the actual output.
Finally, a new (a posteriori) error covariance matrix is calculated from the old (a
priori) matrix. Just to be clear, a priori and a posterior refer to before and after
receiving information from the actual (noisy) measurement.
For the SPL case, we want to measure the frequency detuning of the resonant
cavity due to Lorentz force effects, using a noisy measurement of the time-varying
cavity voltage. To do this, we measure and model the cavity voltage using a vector
state-space with the in-phase and quadrature components of the voltage and their
respective differential equations. If we recall the cavity voltage I/Q relationship to
the generator current pulse:

˙[
Vre(t)
Vim(t)

]
=

[ −ω0

2QL
−ω(t)

ω(t) −ω0

2QL

] [
Vre(t)
Vim(t)

] [−ω0

2
R
Q

0

0 −ω0

2
R
Q

] [
Ire(t)
Iim(t)

]
(3.14)
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Figure 3.6: Kalman filtering operation [WB06]

If we recall the state transition equation, we can distinguish clearly the Kalman
filter parameters:

x(t) =

[
Vre(t)
Vim(t)

]
u(t) =

[
Ire(t)
Iim(t)

]
F (t) =

[ −ω0

2QL
−ω(t)

ω(t) −ω0

2QL

]
B =

[−ω0

2
R
Q

0

0 −ω0

2
R
Q

]
(3.15)

The tuning parameters of the filter will be the process and measurement noise vari-
ances; this means that if the process noise adequately follows our models shortcom-
ings, and the filter measurement noise is close to the actual noise, the output of the
filter will closely follow the real signal even in very poor SNR conditions. Refer to
section 4.4 for detailed schematics of the filter implementation.
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Chapter 4

SIMULINK I-Q Model for SPL
RF Components

Developing a project of great magnitude such as a high-power linear accelerator is
a staggering task and demands careful consideration of all elements involved, such
as power budget, technology requirements and space and time necessary. In order
to foresee difficulties and answer some of the many questions that arise from these
considerations, it is useful to develop a virtual model of what we hope to achieve.
This section describes the progress to date of a model that hopes to achieve flexibility
of design as well as accuracy of results and strives to follow reality as closely and as
reliably as possible. The SPL model described in this section (see overleaf) consists
of a Generator (Klystron) coupled via a circulator and transmission line to 1, 2 or
more resonant cavities, taking into account the effects of beam loading and Lorentz
force detuning. The output is controlled by means of PID feedback. The model also
includes a versatile GUI (graphical user interface) which will be described further
within this chapter. With this layout, it is possible to observe many characteristics
of the RF system. The outputs, in addition to the cavity voltage amplitude and
phase, include forward and reflected power (to and from cavity) with and without
feedback and the additional power due to the feedback loop, all displayed as a
function of time. These results can be observed in open and closed loop operation
for varying component values, in the presence or absence of Lorentz detuning and
source current fluctuation. A phasor diagram of beam, cavity, forward and reflected
powers is also available. In addition, for the multiple-cavity cases, the individual
cavity waveforms as well as Kalman filtering outputs are displayed. All calculations
are done in baseband using Inphase and Quadrature components of complex signals.
A band limited signal centered at a carrier frequency ω0 can be represented using
slow-varying components in-phase I(t), named as such because they are 0◦ or cosine
components and in-quadrature Q(t) , which are the 90◦ or sine components of the
signal [Hol07].
In this section the modelling of each block is explained.
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4.1 Generator, Generator-Cavity Coupling

The generator is modelled as a square wave current source that emits a current
pulse that lasts until cavity filling and beam loading have occurred, the frequency
response of the Klystron is modelled as a low pass filter with 1 MHz bandwidth (as
we are using I-Q components we work in baseband); this bandwidth is considered
high compared to the rest of the system so stability will not be affected by the
Klystron bandwidth. The generator angle is set to zero and this is used as the
reference angle for the cavity and beam phases. We can also observe the feedback
I-Q components adding to the input, all tags(goto) are used to display results. The
coupling from the generator to the cavity is set to 1:1 ratio with no circulator loss
for present calculations. In future analyses the model will include the effects of an
unideal circulator and transmission line length, as well as the coupler efficiency. The
diagram for the generator is shown in figures 4.6 and 4.7.

Figure 4.4: Coupler SIMULINK model (1/N)

Figure 4.5: Circulator SIMULINK model
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4.2 Resonant Cavity Model

The resonant cavity is the most important and complex part of the entire model.
It contains physical and mathematical descriptions on cavity performance as well
as beam loading effects and Lorentz force detuning due to physical deformation at
high voltages. In I-Q description, the cavity output behaves like coupled first order
differential equations driven by the generator current I-Q components.

RL(2Ig + Ib)inphase = τ
dVinphase

dt
+ Vinphase − yVquad

RL(2Ig + Ib)quad = τ
dVquad
dt

+ Vquad + yVinphase

(4.1)

Where y = tan Ψ = 2QL
∆ω
ω0

is the detuning caused by a frequency mismatch, and

τ = 2QL
ω0

is the cavity filling time. Beam loading can be viewed as a train of in-
stantaneous voltage drops in the cavity voltage corresponding to infinitely narrow
bunches passing every 1.4 nanoseconds. The voltage drop due to each bunch is given
by [LP07] [Bou86]:

Vcav bunch = ωRF ×
R

Q
(circuit)× qb (4.2)

Where the synchronous angle φs is given by its LINAC definition, which means the
beam loading occurs with a phase shift of φs degrees before the positive maximum
value of the RF field in the cavity. The injection-time parameter is chosen at a point
in the cavity filling time such that the negative gradient induced by the beam on
the cavity voltage is equal to the positive gradient induced by the generator, and
so we observe flattop operation during the beam pulse. After the beam has been
accelerated, the generator is switched off until the next period of operation.

Figure 4.8: Beam and generator-induced voltage gradients in cavity
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In I/Q representation, however, the current is modelled simply as a DC driving term
to the cavity differential equations. In this way, we are able to observe the envelope
of the full effect. For a complete description of the beam effects it is therefore best
to investigate the characteristics of the cavity voltage signal and the phasor diagram
of the generator-beam-cavity interaction available from the simulation results. The
model also includes the effects of variations in the DC current of the beam source
during beamloading. Lorentz force effects are added to the tuning angle of the sys-
tem as an extra shift in the cavity resonant frequency with respect to the generator
centre frequency. Lorentz detuning is modelled, as of now, as a 1st order differential
equation driven by the square of the accelerating field [Sch98].

d∆ω(t)

dt
=

1

τ

(
−∆ω(t) + ∆ωT + 2πKE2

acc

)
(4.3)

Where K is known as the Lorentz detuning factor and relates the frequency shift to
the square of the electric field inside the cavity, its units being Hz/(MV/m)2 .
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4.3 RF Feedback Loop

The goal of the model for both singular and multiple-cavity cases is to maintain the
cavity voltage during beam loading within certain amplitude and phase values. As
the output is affected by Lorentz detuning and synchronous angle mismatches as
well as microphonics effects and external conditions, a feedback loop is necessary
to maintain the output of our system within the specified parameters. In order to
achieve this, a PID feedback model was used. The proportional gain was set using
stability considerations, taking into account a feedback loop with a 5 microsecond
delay and a bandwidth of 100 kHz. The integral and differential gains were found by
trial and error to produce stable results shown in section 5. The integral gain was
added to suppress any DC offset introduced between the setpoint and the output by
the proportional gain and the differential gain results in a smoother operation (less
oscillation). The SIMULINK model schematic for this block is shown in figure 4.12.
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4.4 Dual Cavity Model

Figures 4.14 and 4.15 show the layout for the two-cavity case. Both cavities are
identically modelled but some of their values can vary slightly to observe the effects of
a slight mismatch between the cavities in the actual SPL design. The real innovation
in this model is the feed-forward scheme using Kalman filters. The filters find the
cavity detuning using a best fit from the cavity voltage and a first order relationship
between this voltage and the Lorentz detuning. Figures 4.16 and 4.17 show the
Kalman filter model and its operation. It is important to mention that the Lorentz
detuning input to the filter model is set to zero as the pickup from the cavity looks
that way due to feedback. The feedback loop works on the vector average of the
outputs from the individual cavities (figure 4.13).

Figure 4.13: Vector average block
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4.5 Graphical User Interface (GUI)

Last but not least, in order to be able to display results quickly and conveniently, add
versatility to the model and shield the user from the low-level design of the project,
a GUI has been designed, striving to be a user-friendly tool for the interpretation
of data derived from the model. The GUI, at its present state, can analyze the
behaviour of single, double and quad-cavity operation with control loops in many
different scenarios, depending on user inputs and display choices. A .exe file was
also created in MATLAB for portability. It is, thus, not necessary to have MATLAB
installed in the machine to operate the GUI. The GUI is displayed in figures 4.18,
4.19 and 4.20; following is an explanation of its main features:

- Start Simulation: the button group labelled as such allows choosing between
single, double and quad-cavity operation in closed-loop and open-loop, as well
as possible feed-forward in the multiple cavity case. Simulation begins when
the Simulate button is activated.

- Operating Parameters: within this box, the user can specify cavity, gen-
erator and beam parameters to match their application. The loaded quality
factor can be specified as fixed or left blank, in which case the program will
calculate the optimum for simulation. The Simulate button in the Start Simu-
lation button group will not be enabled until numerical inputs for these values
are added. Inputs that are not critical are set to zero without user input.

- Progress Bar: As it is impossible to maintain processing speed and output
data from SIMULINK while a simulation is running, the progress bar does not
show the time left for the simulation to finish, but notifies the user when it
has, and shows the time elapsed during the last simulation.

- Axis Control: Both axes in the GUI behave in exactly the same way. There
are two for the purpose of visually comparing graphs and result displays. Using
the popup menu on the right, the user can choose to display different results
for interpretation. These include cavity voltage amplitude and phase, forward
and reflected power, power consumed by feedback loop, frequency shift with
Lorentz detuning, Kalman filter outputs, and a phasor diagram of the effects
of beam loading with synchronous angle φs. Most graphs can also be zoomed
to view critical areas in more detail. In addition, the plot to figure button
can be chosen to plot outside the GUI, for saving or manipulating the graphs
further.
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Chapter 5

Results of Model Analysis

In this section, modelling results are portrayed in a gradual fashion. The single
cavity case is observed for the ideal case, in the presence of Lorentz detuning and
finally results are shown for the dual-cavity behaviour. Bear in mind that all angles
in the phase of the cavity voltage are those of the cavity with respect to the generator.

5.1 Single Cavity in the Absence of Lorentz

Detuning

5.1.1 Open Loop

We start off with the simplest case, a single cavity with a matched loaded quality
factor to beam current. At the time of injection, given by

tinj = ln 2τfill

the beam arrives with a phase shift given by the synchronous angle . This explains
the fact that the power delivered by the generator is not entirely absorbed by the
beam and the cavity voltage increases with time. As the cavity is uncompensated,
the unsynchronised beam causes the voltage amplitude to rise above the 0.5% tol-
erance level and detunes the cavity phase with respect to the generator (0 degree)
phase towards 15 degrees. This also means that some reflected power is observed
during beam loading.
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Figure 5.1: Cavity voltage magnitude and phase in the absence of Lorentz detuning
(open loop)
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Figure 5.2: Forward and reflected power in the absence of Lorentz detuning (open
loop)

58



Figure 5.3: Power phasor diagram for open loop system
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5.1.2 Closed Loop

It is clear from the results in the previous sub-section that feedback is necessary for
the correct operation of the system output. The following results were obtained by
adding PID feedback with an ideal cavity output as a setpoint. The proportional
gain was set by stability considerations, assuming a feedback loop delay of 5 mi-
croseconds. The integral and differential gains were set by trial and error. Both the
cavity magnitude and phase are now within the design specifications, as shown by
figure 5.4. The feedback loop is closed (ON) right after the generator pulse begins,
which means it is already ON when the beam arrives. Right after the beam has
passed, the feedback loop is turned OFF to save power, leaving the cavity detuned
at a constant value depending on the oscillations resulting from the end of beam
loading. The forward and reflected powers are as before, with the addition of the
feedback compensation. The power consumed by the feedback peaks at around 23
kW at the moment of beam injection.
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Figure 5.4: Cavity voltage magnitude and phase in the absence of Lorentz detuning
(closed loop)
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Figure 5.5: Cavity voltage magnitude detail
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Figure 5.6: Forward and reflected power in closed loop operation
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Figure 5.7: Feedback power added
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Figure 5.8: Power phasor diagram for closed loop system
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5.2 Single Cavity with Lorentz Detuning Effects

When a high electric field, and its associated magnetic field, is contained within a
resonant cavity, the pressure exerted on the cavity walls due to their magnitudes
is known as Lorentz force. Lorentz force can result in the physical deformation of
the cavity, which, from the RF point of view, is seen as a damped variation in the
resonant frequency of the cavity. This means the cavity is no longer matched to the
generator frequency, and this has repercussions on the cavity voltage and power,
which means it has effects on the total beam acceleration during beam loading.
Taking into consideration the stiffness of the cavity and using experimental results
from CEA Saclay, the Lorentz detuning coefficient was set to be of -1 Hz/(MV/m)2

for the purposes of our model. This results in a time-dependent frequency shift
given by a first order differential equation as shown in figure 5.9.

Figure 5.9: Resonant frequency shift due to Lorentz force cavity deformation

d∆ω(t)

dt
=

1

τ

(
2πKE2

acc + ∆ωT −∆ω(t)
)

(5.1)

Thus, a frequency shift of -1 Hz/(MV/m)2 results in about a 50 Hz decrease of the
cavity’s resonant frequency for the given beam + generator pulse time.

5.2.1 Open Loop

The open-loop analysis reveals the effect of Lorentz force detuning on the cavity
output, particularly in its output voltage phase. The effect of Lorentz detuning
on the cavity voltage magnitude opposes the effect of the beam angle mismatch;
now the beam absorbs less power from the generator but due to Lorenz detuning
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the generator also delivers less power to the cavity. The Lorentz force (negative
coefficient) also opposes the phase shift in the cavity voltage resulting from the
beam synchronous angle. After beam loading, however, the cavity is out of tune
and the voltage phase will oscillate with a gradient proportional to the detuning.
Once again, some reflected power will be observed during beam loading, but it is
negligible compared to the filling and dumping of the cavity before and after beam
loading.

Figure 5.10: Cavity voltage magnitude and phase with Lorentz detuning (Open
Loop)
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Figure 5.11: Cavity voltage magnitude and phase detail
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Figure 5.12: Forward and reflected power with Lorentz detuning
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Figure 5.13: Power phasor diagram for open loop system
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5.2.2 Closed Loop

It is clear that for the correct operation of the system, the feedback needs to com-
pensate for Lorentz detuning and beam angle effects. Now, as mentioned before,
the feedback loop is closed (ON) during beam loading, and open (OFF) right after
until the next generator pulse. We can now see that both the cavity voltage magni-
tude and phase are within design parameters, with the added phase shift when the
loop if OFF due to the mismatch between generator frequency and cavity resonant
frequency. Due to the fact that negative Lorenz detuning opposes the effect of beam
angle mismatch in both the cavity voltage amplitude and phase, the feedback power
required is actually lower than for the former case (no Lorentz detuning) as the beam
pulse progresses. For the case of a beam passing with a 15 degree synchronous angle
through a cavity with a Lorentz coefficient of -1 Hz/(MV/m)2 , driven by a 1.03
MW generator, the maximum feedback power required is of about 23 kW, but it
decreases during the beam pulse due to the Lorentz effects.
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Figure 5.14: Cavity voltage magnitude and phase with Lorentz detuning (Open
Loop)
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Figure 5.15: Cavity voltage magnitude and phase detail
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Figure 5.16: Forward and reflected power with Lorentz detuning
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Figure 5.17: Feedback power added
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Figure 5.18: Power phasor diagram for open loop system
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5.2.3 Variation of Source Beam Current: Low and High
Power SPL Operation

In both high current and low current operation cases for the SPL specifications,
the source repetition rate is of 50 Hz. The hydrogen ion source for the LINAC
has a specified beam current that can vary within the beam pulse. This variation
has been observed to be up to 5% of the nominal beam current. For the purpose
of our simulations, we added this variation to ensure that the control loop was
adequate. As shown in the following results, the feedback loop has no trouble
compensating for the current variations, provided enough power is available. The
feedback power requirements were found to be around 30kW/mA for the matched
case, and around 20kW/mA for the mismatched (20mA beam current) case. The 20
mA SPL operation has no significant differences with the 40 mA case with respect
to cavity voltage phase and magnitude behaviour. It is interesting, however, to
note the effects of the power mismatch prior to beam loading and the effects of the
mismatched beam on the feedback loop. This would be the case if a lower current
beam is sent to an RF system with a loaded quality factor that is optimised for 40
mA operation. This will give us an idea of the power requirements for mismatched
operation.

Figure 5.19: Effect of beam current variation on feedback power (matched operation)
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Figure 5.21: Effect of beam current variation on feedback loop power consumption
(mismatched operation)
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5.3 Dual-Cavity Case

5.3.1 The Need for Feed-Forward

In context with the superconducting SPL project, there are a few possible schemes
to use as a solution for power requirements and design constraints. Until this point,
this report has dealt with the case of one 1.6 MW Klystron driving a single cavity to
accelerate a 40mA or 20mA beam, the following results deal with a different possible
scheme in which a single Klystron will be used to supply two cavities, and the model
is capable of dealing with a quad-cavity scheme driven by a single Klystron. As the
results for the 4-cavity case do not reveal new information on the operation of
the feedback and feed-forward loops, or on power requirements, the results are not
displayed in this report. They are observable, however, using the graphical user
interface. Figures 5.22, 5.23, and 5.24 below show the cavity voltage of both cavities
separately and of their vector sum. The cavities are identical but for their Lorentz
detuning coefficient (-1 and -0.5 Hz/(MV/m)2 respectively). If we are able to control
only the vector sum output of two cavities, it is possible, as the figures suggest, to
observe a vector sum within specifications resulting from two cavities whose phases
are well outside the acceptance range of 0.5 degrees. The cavity voltage magnitude
is controlled acceptably for both cavities but, if the individual phase of each cavity
is critical, the necessity for the addition of feed-forward becomes quite clear.
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Figure 5.22: Cavity voltage magnitude and phase of vector sum output, feedback
loop is ON
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Figure 5.23: Cavity voltage magnitude and phase for cavity 1
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Figure 5.24: Cavity voltage magnitude and phase for cavity 2
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5.3.2 Dual Cavity with Feed-Forward

The following results show the output of the cavity when using feed-forward. The
model uses Kalman filtering to estimate the cavity voltage magnitude from a noisy
measurement of the cavity voltage I/Q components. This is then used to estimate
the Lorentz force detuning due to that (estimated) voltage and finally the estimated
detuning is directly subtracted from the actual detuning within the model in an
effort to imitate the effects of a similar waveform produced by the piezoelectric
circuitry installed in the real cavities. There are a couple of shortcomings with this
model that can be foreseen; first of all, the tuning of the Kalman filter will have to
be set in real life as the Kalman filter process model might be too close to the actual
model as they are both done in SIMULINK (as opposed to real life and FPGAs), and
more importantly there is the need for transfer function characteristics and power
consumption of the piezoelectric circuit to really model the actual performance. This
can introduce noise of its own and, once again, some tuning might be necessary for
practical applications.

Figure 5.25: Cavity phase for cavities controlled by a single loop, feed-forward
correction is applied
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5.3.3 Loaded Quality Factor Mismatch

As previously mentioned; when feeding multiple cavities using a single Klystron, it
is not possible to control each cavity output individually, but rather the vector sum
of each voltage. This means that there is nothing we can do with the control loop
to compensate for variations within the individual cavities in loaded quality factor.
The control loop will optimise the vector sum while the individual cavities might
diverge from the specifications of SPL operation. According to modelling results,
for the deviation constraints for the cavity voltage magnitude of +-0.5% of the total
(26.6× 106MV ), we find that the limit of QL difference lies around 1.5% difference
in value between both cavities, where the optimum value is 1.3113× 106.

Figure 5.26: Effect of 20k (1.5%) difference between loaded quality factors of reso-
nant cavities
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Figure 5.27: Effect of 30k (2.2%) difference between loaded quality factors of reso-
nant cavities
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5.4 Error Analysis and Stability Considerations

Until this point in the report, we have shown the versatility of the model with regard
to the stabilisation of the electric field within superconducting RF resonant cavities
with the specifications needed to build the SPL. However, no analysis is full without
pointing out some of the limitations of the system. As shown in the last chapter,
a >1.5% difference in the cavities’ quality factor can result in a deviation on cav-
ity voltage magnitude that cannot be resolved using feedback or feed-forward when
more than a single cavity is driven by one Klystron. The feedback loop compensates
the vector sum of the cavity voltages, keeping it within specifications (0.5% magni-
tude and 0.5◦ phase deviations), but that does not mean that each cavity separately
is also exhibiting the same behaviour. The cavity voltage magnitudes vary with the
difference in the loaded quality factors and their magnitudes and phases vary with
the difference in their Lorentz detuning coefficients. To observe the extent of these
variations, a simulation sweep was carried out, recording the voltage magnitude
difference at the output, as well as the phase difference (voltage of cavity 1 minus
voltage of cavity 2). For both the loaded quality factor (QL) and Lorentz detuning
coefficient sweeps (K), it was found that fitting a curve based on the results was more
suited than an analytic approach. With this curve, an exhaustive analysis using a
model for the whole SPL length can be developed as a parallel project, to observe if
the beam cannot ultimately tolerate the single cavity variations even though their
overall effect (vector sum) might appear within specifications. The results are as
follows:

Cavity voltage difference between two cavities with different loaded qual-
ity factors

QL optimal = 1.3113× 106

Measurements of the voltage difference between both cavities were taken with feed-
back control on their vector sum. As the quality factor of the cavities has no
impact on their voltage phases, the analysis is restricted to cavity voltage magni-
tudes. The sweep was done using values for QL1 and QL2 (for cavities 1 and 2
respectively) from 1e6 to 1.5e6 at 1e4 intervals resulting in 51 different values of QL

and 51*51=2601 different QL1, QL2 combinations minus redundant values. Thus,
the obtained Vdiff = f(QL1, QL2) curve was fitted using 1326 points. The polyno-
mial equation relating the voltage output difference to the individual loaded quality
factors of the cavities was found to be of the form

Vdiff (x, y) = p00 + p10x+ p01y + p20x2 + p11xy + p02y2 (5.2)

where x = QL1 and y = QL2, with coefficients:

p00 = 1.725× 106

p10 = 34.88
p01 = −37.66
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p20 = −8.311× 10−6

p11 = 1.527× 10−7

p02 = 9.27× 10−6

Figure 5.28 below shows the curve fit. The blue points are given by model experimen-
tal results, while the continuous plane is given by the equation above. The individual
cavity voltages can be reproduced as Vcav1 = Vacc +

Vdiff
2

and Vcav2 = Vacc − Vdiff
2

,
where the low voltage corresponds to the cavity with lower QL.

Cavity voltage difference between two cavities with different Lorentz de-
tuning coefficients

K optimal= 0 Hz/(MV/m)2

As before, measurements were taken in closed-loop operation with no feed-forward.
In this case, however, both the cavity voltage magnitude and phase are affected by
varying Lorentz detuning coefficients. Two curves are therefore fitted, with values
of K from -1 Hz/(MV/m)2 to +1 Hz/(MV/m)2 using 0.01 Hz/(MV/m)2 intervals
(20301 points). Figures 5.29 and 5.30 show the fitted surfaces for magnitude and
phase difference respectively. The respective polynomials for the voltage magnitude
and phase difference were found to be:

Vdiff (x, y) = p00 + p10x+ p01y + p20x2 + p11xy + p02y2 (5.3)

with coefficients:

p00 = 25.8
p10 = −2.05× 1014

p01 = 2.014× 1014

p20 = −3.496× 1028

p11 = −1.565× 1026

p02 = 3.505× 1028

and:

Vdiff (x, y) = p00 + p10x+ p01y (5.4)

with coefficients:

p00 = −0.0004408
p10 = 3.768× 1012

p01 = −3.768× 1012

where x=K1 and y=K2.
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Once again, the individual cavity voltage magnitudes can be found using the afore-
mentioned formula centered at Vacc. The phase equation is centered at 0◦.

Figure 5.28: Curve fit for cavity voltage difference with varying loaded quality factor

Figure 5.29: Curve fit for cavity voltage magnitude difference with varying Lorentz
force detuning

All system configurations described are part of an analysis whose goal is to prove the
viability of a superconducting, high-power proton LINAC from the point of view of
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Figure 5.30: Curve fit for cavity voltage phase difference with varying Lorentz force
detuning

the RF systems. The SPL is not only a challenge because of the energies and bunch
densities involved, but the fact that the underground cavities are driven by pulsed
klystrons operating from the surface adds complexity to the situation. The time
delay of the feedback loop becomes an issue when the connectors are of considerable
length, and the operating frequency of the system is of the order of hundreds of
megahertz. In addition to this effect, pulsed generators introduce transients to the
system with components in the whole frequency spectrum. A feedback delay of 5
us is included in the model, and stability analysis was carried out using low-pass
filters to model the feedback loop and generator frequency responses. Finally, the
proportional feedback gain was set to ensure that the system is stable [Gar96] [Hof].
The open-loop transfer function is given by:

HSPL(s) = HFB(s)HKly(s)HCav(s)HDelay(s)Hprobe(s) (5.5)

where

HFB(s) =
GFB
s

2πfcFB
+ 1

HKly(s) =
GFB
s

2πfcKly
+ 1

(5.6)

Hprobe(s) = Gprobe HDelay(s) = e−sτ (5.7)

HCav =

[
Hs(s) −Hc(s)
Hc(s) Hs(s)

]
(5.8)

The cavity self and cross-coupled transfer functions are given by
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Hs(s) = σR

[
s+ σ

(
1− ∆ω

ωR

)
(s+ σ)2 + (∆ω)2

]

Hc(s) =
σ2R

ωR

[
s+

(
σ + ωD∆ω

σ

)
(s+ σ)2 + (∆ω)2

] (5.9)

where
σ =

ωR
2QL

ωR is the resonant frequency of the cavity, and ∆ω = ωR − ω0 is the frequency
deviation between RF source and resonant frequency of the system. The value was
chosen as the maximum value observed in simulations.

We find that the problem of observing the characteristics of the system transfer
function is not as straightforward as expected, as the behaviour of the model is the
result of a coupled action between in-phase and quadrature signal components. The
output of the system can be expressed using the following coupled equations:

YI(s) = HK(s)Hs(s)XI(s)−HK(s)Hc(s)XQ(s)

YQ(s) = HK(s)Hs(s)XQ(s) +HK(s)Hc(s)XI(s)
(5.10)

where
HK(s) = HFB(s)HKly(s)(s)HDelay(s)Hprobe(s)

I/Q refer to inphase and quadrature components, and s/c refer to the self and cross-
coupled components of the cavity transfer function respectively. X and Y are inputs
and outputs to the system. If we assume a purely inphase unit step input to the
system to begin with, the system equations simplify to yield

YI(s) = HK(s)Hs(s)XI(s)

YQ(s) = HK(s)Hc(s)XI(s)
(5.11)

and so we can investigate the stability behaviour of the system by analyzing the
transfer function given by

HK(s)
(
Hs(s) + iHc(s)

)
in both magnitude and phase.
We want to find GFB such that the open-loop transfer function is such that the
closed-loop system is stable. For a feedback loop with a 100 kHz bandwidth and a
1 MHz bandwidth klystron driving an SPL cavity at its resonant frequency of 704.4
MHz, we find a gain margin of about 43 dB (x150) as shown in figure 5.31.
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