

Status of 704 MHz developements

at CEA-Saclay

Outline

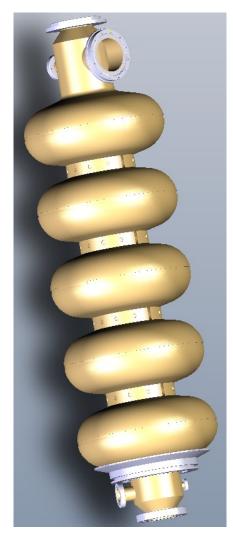
Status of components for high beta cavities
 → Helium tanks
 → Tuners

Status of equipments for preparation and test

- Vertical EP
- ⇒ 2nd Sound system
- ➡ RF power test stand

CEA-Saclay is involved in programs aiming at designing and prototyping 700 MHz sc cavities and components

- European program FP7 (EuCARD, CNI-PP-SLHC)
- Contribution Exceptionnelle de la France au CERN
- ESS collaboration (MoU to be signed)


We participate in several tasks consisting in:

- the design of 704 MHz cavity, He tank, frequency tuner
- the prototyping of 704 MHz cavity(ies)
- the construction of equipments needed for preparation and test of components (vertical EP station, HPR station, vertical and horizontal cryostats)
- the RF tests at cold of components (power couplers, tuners) and optimization of algorithm for LFD compensation
- the processing of 704 MHz power couplers up to 1MW
- the fabrication of sets of He tank and frequency tuners

Optimized design of 704 MHz β =1 cavity presented at the meeting

saclay

With this optimized design, prototypes would fit on our frames for surface preparation (BCP, VEP, HPR) and test in vertical cryostat

☑ assymetric cavity

beam tube Ø140 mm with a Ø100 mm port for power coupler
beam tube Ø130 mm with a Ø10 mm port for pick-up probe
☑ stiffening rings between adjacent cells
☑ inner diameter of the cavity flanges fixed to 80 mm

To perform qualification tests in horizontal cryostat or cryomodule, study of a fully equipped cavity (tuner, coupler, tank, ...) is necessary

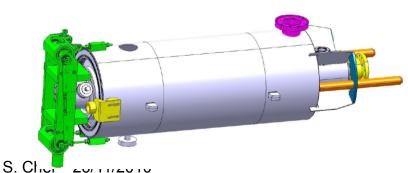
- power coupler port cooled by LHe
- ➡ lateral frequency tuner (similar to Saclay IV)
- ➡ each beam tube equipped with one Ø40 mm HOM port
- ➡ fabrication of cavity and He tank without brazing

Helium tank made of Ti ; flanges made of NbTi

Helium tanks for 704 MHz $\beta=1$ cavities

saclay

Since the 4th SPL Collaboration meeting

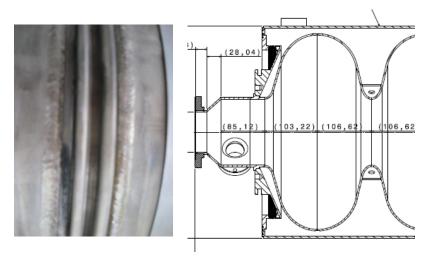

 \blacktriangleright Completion of the design compatible with the Saclay 704 MHz β =1 cavity

- ➤Assessment of modifications for integration in the "short cryomodule"
 - ⇒ several pieces of interface have to be modified

➤Two models of tanks are studied in parallel

(validated at CEA/CERN/IN2P3 meeting held at IPN-Orsay (15/10/ 2010)

Tank designed for integration of cavity string in short cryomodule (CERN concept)



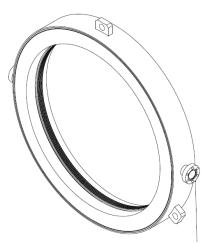
Helium tanks for 704 MHz $\beta=1$ cavities

saclay

Modification of Ti bellow

- Ti bellow to be welded on the Helium tank made out of Titanium
- axial stroke of +/- 3 mm w/o plastic deformation (tuning range)
- small stiffness with respect to the cavity

Hydroformed Ti waves


- Easy to clean

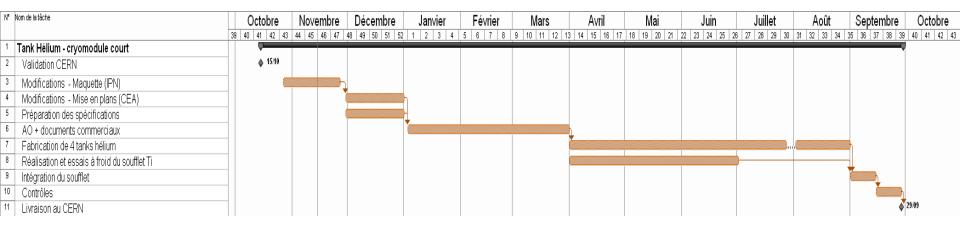
- Stiffness with wall thickness 0.25mm: 700 N /mm

- Cheapest option

Offer received from Skodock GmbH for a 2 waves bellow : Ti bellow qualified at 3 bars in a temperature range +50/-271 °C

If needed, we are ready to prepare a test at Saclay (mechanical measurements, thermal cycling, tightness, deformation under pressure forces)

S. Chel - 26/11/2010



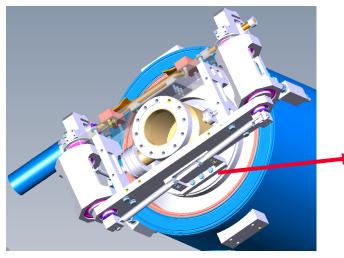
Helium tanks for 704 MHz $\beta=1$ cavities

Drawings almost completed
 (3D model done by IPN and detailed drawings by CEA)

□ To be submitted to CERN for validation

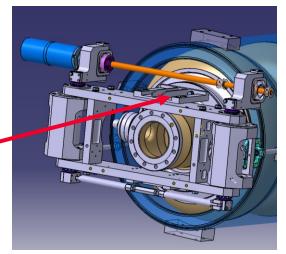
Technical specifications ongoing

Frequency Tuners for 704 MHz $\beta=1$ cavities

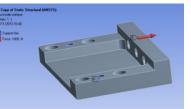

saclay

Since the 4th SPL Collaboration meeting

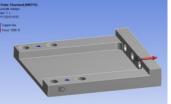
Completion of the tuner design compatible with the Saclay 704 MHz β =1 cavity

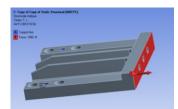

Assessment of necessary modifications for integration in the "short cryomodule"
Only one piece of tuner has to be modified

Validation by CERN at CEA/CERN/IN2P3 meeting held at IPN-Orsay (15/10/ 2010)



Tuner Saclay V (with one piezo actuator)


Lengthening of the connecting piece of 45mm


Optimization of the connecting piece to recover an acceptable stiffness

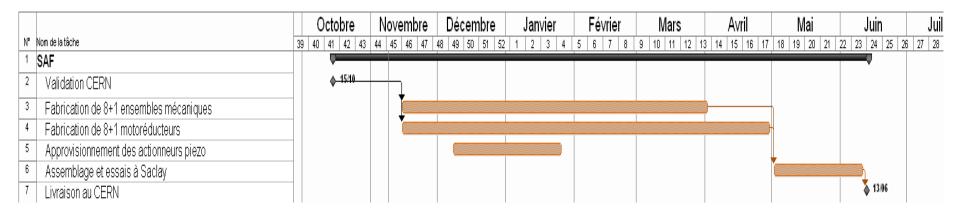
>100 kN/mm

60 kN/mm

90 kN/mm

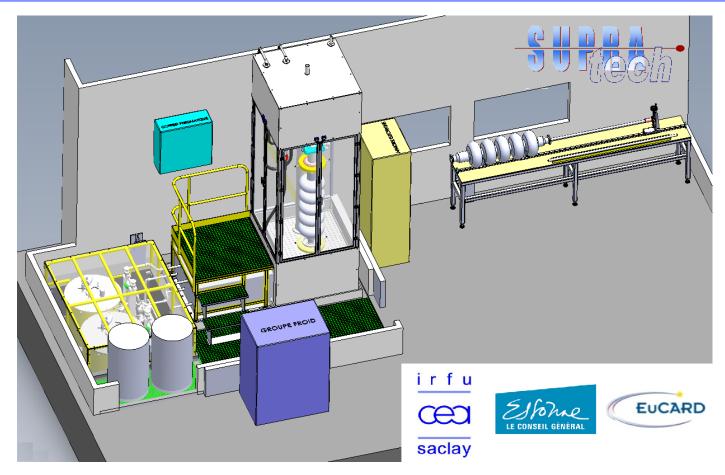
Frequency Tuners for 704 MHz $\beta=1$ cavities

saclay


□ Call for offers launched in June and commercial offers received:

- in August for the mechanical set of pieces
- in September for the Phytron motor+gear box

Contracts for fabrication/delivery of 9 tuners are ready (signature expected for next week)


□ Piezo assembly, final assembly and test to be done at Saclay

Delivery to CERN in June 2011

Vertical EP station

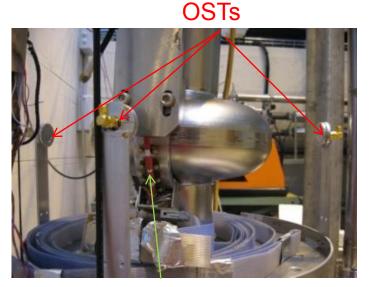
Fabrication starts (contract signed in Nov. 2010)

VEP station should be tested in April 2011

F. Eozénou

Quench localization by 2nd sound detection

saclay Sensors:


- > 8 Oscillating Superleak Transducers (OST) received from Cornell
- 1 prototype electronics circuit developed at Saclay

Tests in VC with a 1-Cell 1.3 GHz cavity were undertaken:

-With a T-mapping system for quench localisation

-With 3 OST sensors for qualification of the instrumentation and acquisition

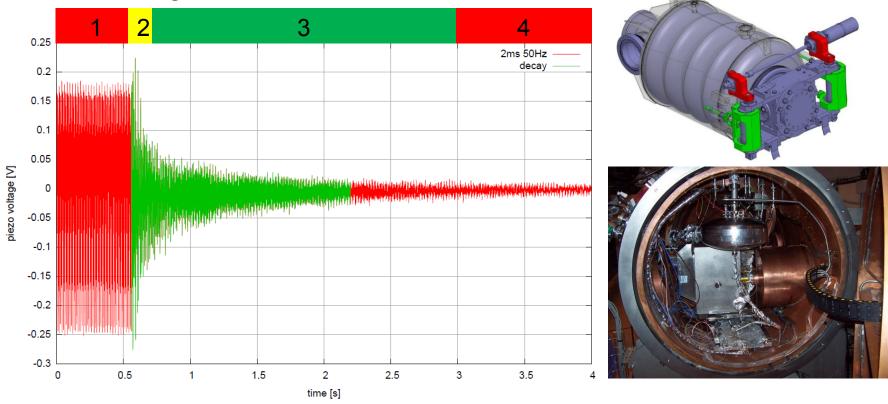
T map sensors

Unfortunately, no signal was measured from the OST sensors due cavity FE

New BCP & VT in progress

J. Plouin

S. Chel – 26/11/2010


irfu Œ

SLHC-PP: test in pulsed mode

saclay

➤Test done on « HIPPI » cavity (beta=0.5 – 704 MHz – 5cells) in CryHolab

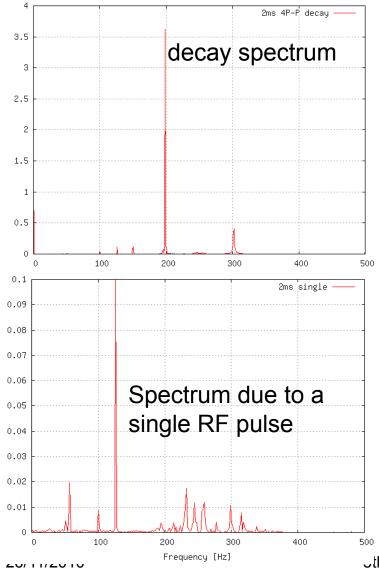
Piezo signal used as a sensor

1 : Mechanical excitation due to LFD ; RF pulses 50 Hz, 2 ms, Eacc = 14.5 MV/m

Only stable oscillation observed ; 20 ms between pulses is too short for the modes to decay.

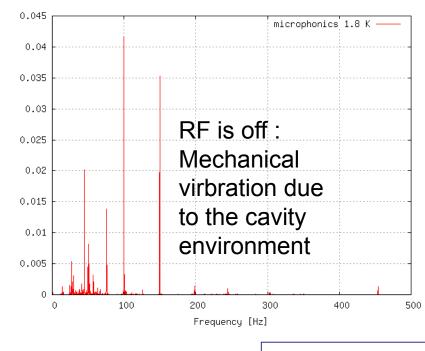
- 2: RF is switched off
- 3 : mechanical modes decay for approx. 2 s
- 4 : mechanical vibration due to the environment

G. Devanz


irfu CCCC

saclay

S. Che.


SLHC-PP: test in pulsed mode

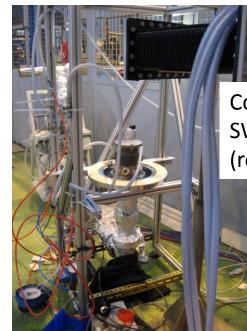
Analysis of piezo signals from the previous slide:

Q estimates:

- 400 for 198 Hz mode
- 300 for 301 Hz mode

Jth SPL Collaboration Meeting

G. Devanz


SLHC-PP: preparation of tuner test

saclay

INFN cavity (beta=0.5 – 704 MHz – 5cells) with a blade tuner in preparation
 700 MHz-1MW coupler from CEA with a modified manchette

Diameter of the cavity flange (80 mm) NbTi flange with Al hexagonal gasket

Coupler processing: SW - 500 kW @ 50 Hz – 2ms (reached in 2 days)

Tests with INFN cavity scheduled in January 2011
 Availibility of the RF power test area in April 2011
 Processing of pairs of couplers (E. Montessinos presentation)

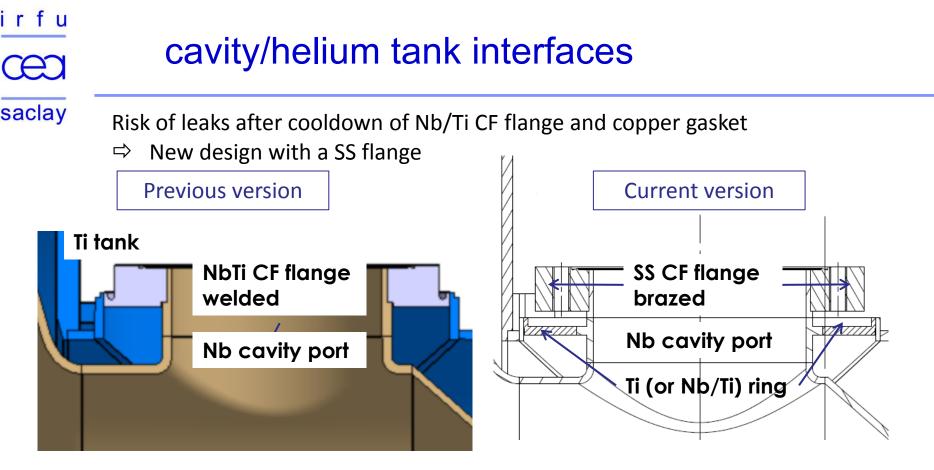
5th SPL Collaboration Meeting

G. Devanz

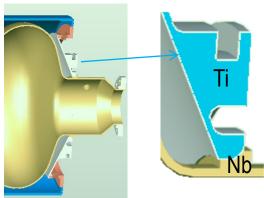
- Fabrication of tuners started
- Design of tank completed, drawings & specs in progress
- Equipments for surface preparation and vertical test of 704MHz cavities should be ready mid-2011
- High power RF tests are going on in the frame of te SLHC-PP program ; processing of new couplers from CERN will follow
- Proposal for power upgrade (2MW) is in preparation

Thank you for your attention

Cavity string in front of the CEA-Saclay CR


Assembly and alignment workstation

Wagon used for transport between workstations



Cantilever used for assembly

5th SPL Collaboration Meeting

Direct welding (Nb-Ti): connection piece redesigned

