HOM simulations: Single cavities and cryomodules

26th Nov 2010

Steve Molloy, Rob Ainsworth Royal Holloway, University of London

Outline

- Single cavity results (CEA β=1)
- Previous cryomodule simulations
 - Presented in Lund in June
 - What we got wrong!
- Correction to the method
 - Description of the theory
 - Calculations & simulations
 - Conclusions

Single Cavity simulation (CEA $\beta=1$)

Dispersion curves for single cavity

Coupling vs beam velocity

Beam-pipe, coupler, & hybrid modes

- Some modes hard to identify
 - "Polarity" changes from cell-to-cell
 - Very asymmetric in z
 - Confined to large diameter beam-pipe
- Some pass-bands missing modes!
 - 4/5 modes in passband identified
 - Remaining mode illusive
 - Mode at "right" frequency has "wrong" structure

Coupler/Beampipe modes

Multi-cavity coupling

- A single cell has the usual mode spectrum
 - \bullet TE_{mmp}, TM_{mmp}
- Coupled cells (e.g. in a multi-cell cavity)
 - Modes split into passbands
 - Each oscillation characterised by phase advance per cell
- Multicavity installations (i.e. a cryomodule)
 - Modes below beam-pipe cutoff, so disregarded
 - But this neglects evanescent coupling!

Eigensolve 4 full cavities

~6 m long

~760k elements
Average volume = 4.5 x 10⁻⁷ m⁻³
Min edge length = 1.4 mm
Max edge length = 32.9 mm

oyal Holloway sity of London

Eigenmodes exist in all cavities

Intra-cavity coupling

- Each cavity mode will be found four times
 - One for each cavity
 - A single cavity will dominate each mode, however the evanescent field allows coupling.
 - Beam → Field coupling in one cavity will excite fields in all others.
 - Expect coupling to increase (non-trivially) with frequency
- Extract intra-cavity coupling from simulation
 - Ratio of field amplitude between each cavity and its neighbour

Coupled oscillators

- Eigenmodes of coupled oscillators split according to the phase difference
 - "0-mode", "π-mode", etc.
- For N+1 coupled oscillators
 - $i\pi/N$ radians phase advance (i=0,1,...N)
 - Frequency also splits
 - Dependent on the coupling strength
 - Each new mode may be plotted on a Brillouin curve
 - For N<∞ the modes are equally spaced along the curve

$$\omega_{\theta}^{2} = \omega_{\pi/2}^{2} (1 - \kappa \cos(\theta))$$

Royal Holloway University of London

Three different geometries

Three different geometries

Three different geometries

Impact of taper – loss factor

Impact of taper

- No effect on monopole coupling
- Perturbs beam due to increased loss factor
- Decreases dipole coupling
 - But is this desirable?
 - Decreased coupling → lower amplitude
 - Lower amplitude → decreased efficiency of HOM coupler
- Is a taper necessary?

Summary & Conclusions

- R/Q vs β
 - R/Q of 2rd mono passband comparable to TM010
- Coupler/beampipe modes
 - Normally ignored for H+/H- machines
 - R/Q > 1 Ω (@ 1 mm)
 Is this a concern? Further investigation necessary?
- Cavity-to-cavity coupling necessity of taper?
 - Coupling calculation corrected
 - Negligible effect on monopole coupling
 - Adds to loss factor
 - Necessary?

