

"Storage of low energy heavy ions at FAIR"

Deceleration and Storage of heavy, highly charged ions

CRYRING@ESR and HITRAP

Frank Herfurth

GSI/FAIR, Stockholm University, KVI Groningen, HI Jena, Krakow University

The GSI/FAIR Site

CRYRING in Stockholm (MSL)

Singly charged positive atomic ions:

 $\begin{array}{l} H^{+}, D^{+}, {}^{3}\text{He}^{+}, {}^{4}\text{He}^{+}, {}^{7}\text{Li}^{+}, {}^{9}\text{Be}^{+}, {}^{11}\text{B}^{+}, {}^{12}\text{C}^{+}, {}^{14}\text{N}^{+}, {}^{16}\text{O}^{+}, {}^{40}\text{Ar}^{+}, {}^{40}\text{Ca}^{+}, {}^{45}\text{Sc}^{+}, {}^{48}\text{Ti}^{+}, {}^{56}\text{Fe}^{+}, {}^{83}\text{Kr}^{+}, {}^{84}\text{Kr}^{+}, {}^{86}\text{Kr}^{+}, {}^{88}\text{Sr}^{+}, {}^{129}\text{Xe}^{+}, {}^{131}\text{Xe}^{+}, {}^{132}\text{Xe}^{+}, {}^{138}\text{Ba}^{+}, {}^{139}\text{La}^{+}, {}^{142}\text{Nd}^{+}, {}^{151}\text{Eu}^{+}, {}^{197}\text{Au}^{+}, {}^{208}\text{Pb}^{+} \end{array}$

~200 different ion species

singly charged (pos. & neg.) multiply charged molecular (pos. & neg.)

Positive molecular ions:

 $H_2^+, HD^+, H_3^+, D_2^+, H_2D^+, ^3He$ $NH_2^+, OH^+, CH_5^+, NH_4^+, H_2O^+$ $C_2H_2^+, HCN^+, C_2H_3^+, HCNH^+,$ $NO^+, D^{13}CO^+, CH_3O^+, CF^+, O_2$ $N_2H_7^+, D_2^{32}S^+, CD_3OH_2^+, CD_3$

Successful operated from 1992 to 2010 Dismantled and shipped to FAIR/GSI in 2012/13

 $\begin{array}{l} D_{3}^{34}S^{+}, C_{3}H_{4}^{+}, D_{2}^{37}Cl^{+}, D_{5}O_{2}^{+}, CH_{3}CNH^{-}, C_{3}D_{3}^{-}, N_{2}D_{7}^{-}, N_{3}^{-}, C_{3}H_{7}^{-}, Nad20^{-}, CO_{3}H_{7}^{-}, Nad20^{-}, CO_{3}H_{7}^{-}, Nad20^{-}, CO_{3}H_{7}^{-}, Nad20^{-}, CO_{3}H_{7}^{-}, Nad20^{-}, CO_{3}H_{7}^{-}, Nad20^{-}, CO_{3}H_{7}^{-}, N_{2}O_{2}^{-}, CD_{3}CDO^{+}, CD_{2}D^{+}, CD_{3}CDO^{+}, NO^{+}H_{2}O, O_{3}^{+}, DCOOD_{2}^{+}, CD_{3}OCD_{2}^{+}, C_{3}D_{7}^{+}, CF_{2}^{+}, NO^{+}D_{2}O, DC_{3}N^{+}, CD_{3}OCD_{3}^{+}, N_{3}H_{10}^{+}, DC_{3}ND^{+}, \\ CD_{3}ODCD_{3}^{+}, H_{7}O_{3}^{+}, COS^{+}, N_{2}O_{2}^{+}, CH_{3}OCOH_{2}^{+}, D_{7}O_{3}^{+}, N_{3}D_{10}^{+}, C_{4}D_{6}^{+}, S^{18}O_{2}^{+}, ArN_{2}^{+}, \\ H_{9}O_{4}^{+}, CD_{3}COHNHCH_{3}^{+}, CD_{3}CONHDCH_{3}^{+}, C_{6}D_{6}^{+}, PO^{37}Cl^{+}, H_{1}O_{5}^{-}, C_{2}S_{2}H_{6}^{+}, \\ C_{2}S_{2}H_{7}^{+}, H_{13}O_{6}^{+}, PO^{35}Cl_{2}^{+} \end{array}$

Negative atomic ions: H⁻, Li⁻, F⁻, Si⁻, S⁻, Cl⁻, Se⁻, Te⁻

Negative molecular ions: CN⁻, C₄⁻, Si₂⁻ Cl₂⁻ GSI(FAIR): + heavy, highly charged ions!

- FAIR Research & Development
- Detectors and diagnostic systems
- FAIR type control system
- Training of operators on FAIR type sy with real beam (standalone operation du

Scientific Opportunities

Heavy, highly-charged ions available at GSI (up to U⁹²⁺, fragmentation products) at low energy 100 keV/u .. 10 MeV/u – bridge the energy gap between the ESR (> 4 MeV/u) and HITRAP (<10 keV/u)

CRYRING

some years later ..

... arrived at ESR

Beamtime Q1/2 2020

- Captured, Stored and Cooled Pb⁷⁸⁺ and Pb⁸²⁺ (bare)
 - 6 x 10⁶ particles extracted from ESR at 10 MeV/nucleon
 - 3 x 10⁵ particles available for experiments in CRYRING@ESR after cooling
 - Ion beam deceleration to 4 MeV/nucleon has been successfully tested
- Lifetimes measured for different energies and ions
 - Pb⁸²⁺ lives between 10 and 20 seconds @10MeV/u

Horizontal beam profile over time

Lifetime, i.e. time for a signal drop of 8 dB

Electron Cooling ESR - CRYRING

comparison plot: M. Lestinsky; Publication: B. Zhu et al., submitted to PRA, arXiv:2201.06977v1

Fast Extraction, Deceleration, CCC

¹⁰⁷Ag⁴⁷⁺ ions

injected, cooled, decelerated, cooled, extracted

horiz. beam profile of stored beam

Extraction Beam Line

Experiment Detector

about 4.10^6 ions reach the target

Cryogenic Current Comparator installed, tested

Ultra High Vacuum & Beam Life Time

LIFETIMES OF BARE NUCLEUS

- Ion pumps
- ~ 10
- Cryopumps
- NEG pumps

~ 100

Vacuum Conditions

Main effort in 2020 went into sections 05 - 08:

- addition of new ion getter pumps
- NEG coating of some easily accessible parts

Electron Current	Measured lifetime/s	Beamcalc lifetimes/s	@10 MeV/u
12 mA	24	33	Pb ⁷⁸⁺
22 mA	8	28	Pb ⁷⁸⁺
12 mA	19	28	Pb ⁸²⁺
22 mA	12	23	Pb ⁸²⁺
			@ 7MeV/u
12	12	18	Pb ⁷⁸⁺
			@4 MeV/u
0 mA	5	7.5	Pb78+

calculations (M. Lestinsky et al.): http://web-docs.gsi.de/~lestinsk/beamcalc

General-Program Advisory Committee accepted: (A and A-)

E129	J. Rothhardt	IAP Jena	Photoionization of C+ ions at CRYRING	
E131	S. Schippers	U Giessen	Precision collision spectroscopy of Be-like ions at the CRYRING@ESR electron cooler	
E138	G. Weber	U Jena	The Ground-State Lamb Shift in the Heaviest Hydrogen-like Ion (U91+): High Resolution X-ray Spectroscopy at the CRYRING electron cooler	
E140	M. Lestinsky	GSI	Absolute rate coefficients from dielectronic recombination for astrophysically important ion species	
E148	R. Sanchez	GSI	A Test of Optical Pumping at CRYRING	
E149	C. Brandau	U Giessen	Commissioning and First Storage Ring Experiments of the CRYRING Transverse Electron Target	
E151	O. Forstner	U Jena	Measurement of the astrophysical relevant alpha-capture reaction rate $44Ti(\alpha,p)47V$	
E153	W. Biela	U Krakow	Multielectron recombination processes in He-like oxygen at the CRYRING@ESR electron cooler	
E154	S. Bernitt	HI Jena	High-Resolution Spectroscopy of Charge Exchange Between Highly Charged lons and Molecular Hydrogen for Laboratory X-ray Astrophysics at CRYRING	
E155	E. Lamour	INSP Paris	Letter of Intent: Fast Ion – Slow Ion Collisions @ CRYRING	
S461	C. Bruno	U Edinburgh	Nuclear astrophysical reaction studies using the CRYRING reaction chamber system (CARME)	
Smat_Breuer_Commis sioning	L. Breuer	U Duisburg-Essen	Commissioning of the MAT target station at CRYRING	
Smat_Umat_Velthaus	V. Velhaus	GSI	lon-induced desorption at room temperature for different surface treatments and beam parameters	

G-PAC proposals for 2021 and 2022

12 proposals total

~400 shifts

4 proposals with ESR beam ~120 shifts 1 LOI for 2023ff

contact: D. Severin, M. Lestinsky

HITRAP

Overview

A/q < 3 (U⁹²⁺ ...) 10⁵ ions/pulse @ keV/q ... meV/q (∆ < 0.3 meV)

F. Herfurth "The HITRAP Facility"

HITRAP

Experimental Area

Timeline

F. Herfurth "The linear decelerator HITRAP"

HITRAP

4 MeV/u

Status of commissioning

- deceleration from 4 MeV to 6 keV/nucleon demonstrated
- Test ion source operational also for light, but highly charged ions (EBIT)
- transport from trap to experiments routinely achieved
- final step still to be commissioned
 capture and cooling of HCL
 - capture and cooling of HCI -

CRYRING@ESR and HITRAP

Storage of low energy heavy ions at

FAIR 🖬 🖬 🖬

- CRYRING@ESR served experiments with very few failures and will serve them in 2022 too.
- Challenges:
 - Beam intensity expected vs. delivered
 - Vacuum conditions
 - ECooler small defects need large intervention
- HITRAP will continue commissioning in 2022
- Challenges:
 - reestablish deceleration from 4 MeV/u to 6 keV/u
 - capture and cool HCI in cooling Penning trap