

First direct hadron EDM measurement with deuterons using COSY

Frank Rathmann (on behalf of the JEDI collaboration)

Extreme Storage Rings Workshop iFAST 02.02.2022 <https://indico.cern.ch/event/1096767/>

[First direct hadron EDM measurement with deuterons using COSY](#page-62-0) Frank Rathmann (f.rathmann@fz-juelich.de) 1/ 63

Contents

[Introduction](#page-2-0)

[Baryon asymmetry in the Universe](#page-2-0) [Electric dipole moments](#page-3-0) [Frozen-spin method and magic machines](#page-7-0)

[Progress toward storage ring EDM experiments](#page-11-0) [Spin coherence time, spin tune, and phase lock](#page-13-0)

[First direct deuteron EDM measurement using COSY](#page-19-0) [RF Wien filter method](#page-20-0) [Technical realization of RF Wien filter](#page-23-0) [Fast RF switches and pilot bunch](#page-25-0) [Measurements of EDM-induced polarization buildup](#page-27-0)

[Outlook](#page-33-0)

[From JEDI to CPEDM: a prototype EDM storage ring](#page-33-0)

[Summary](#page-35-0)

Baryon asymmetry in the Universe

Carina Nebula: Largest-seen star-birth regions in the galaxy

Observation and expectation from Standard Cosmological Model (SCM):

 \triangleright SCM gets it wrong by about 9 orders of magnitude.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 3/ 63

Electric dipole moments (EDMs)

For particles with EDM \vec{d} and MDM $\vec{\mu}$ ($\propto \vec{s}$),

 \blacktriangleright non-relativistic Hamiltonian:

$$
H=-\vec{\mu}\cdot\vec{B}-\vec{d}\cdot\vec{E}
$$

Energy of magnetic dipole invariant under P and T :

$$
-\vec{\mu} \cdot \vec{B} \stackrel{P \text{ or } T}{\longrightarrow} -\vec{\mu} \cdot \vec{B}
$$

No other direction than spin \Rightarrow \vec{d} parallel to $\vec{\mu}$ (\vec{s}).

Energy of electric dipole $H = -\vec{d} \cdot \vec{E}$, includes term $\vec{s} \cdot \vec{E} \stackrel{Port}{\longrightarrow}$ $\iff -\vec{s} \cdot \vec{E},$ (1)

Thus, EDMs violate both P and T symmetry

- \triangleright EDMs possibly constitute the missing cornerstone to explain surplus of matter over antimatter in the Universe.
	- \triangleright Non-vanishing EDMs would add 4th quantum number to fundamental particles (besides m , q , and s).

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 4/ 63

Motivation

Large worldwide effort to search for EDMs of fundamental particles:

- \blacktriangleright hadrons, leptons, solids, atoms and molecules.
- \blacktriangleright ~ 500 researchers (estimate by Harris, Kirch).

Why search for charged particle EDMs using a storage ring?

- 1. Up to now, no direct measurement of charged hadron EDM available:
- 2. Charged hadron EDM experiments provide potentially higher sensitivity than for neutrons:
	- \blacktriangleright longer lifetime,
	- \triangleright more stored polarized protons/deuterons available than neutrons, and
	- \triangleright one can apply larger electric fields in storage ring.
- 3. Approach complimentary to neutron EDM searches.

Theorists keep repeating that

EDM of single particle not sufficient to identify \mathcal{CP} violating source [\[4\]](#page-37-3)

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 5/ 63

Naive estimate of scale of nucleon EDM

From Khriplovich & Lamoreux [\[5\]](#page-37-4):

 \triangleright CP and P conserving magnetic moment ≈ nuclear magneton μ_N .

$$
\mu_N = \frac{e}{2m_p} \sim 10^{-14} \,\text{e cm}.
$$

- \blacktriangleright A non-zero EDM requires:
	- ▶ P violation: price to pay is $\approx 10^{-7}$, and
	- ▶ CP violation (from K decays): price to pay is $\sim 10^{-3}$.

 \blacktriangleright In summary:

$$
|d_N| \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} \, \text{e} \, \text{cm}
$$

In Standard model (without θ_{QCD} term):

 $\left\vert\, \left\vert d_{\rm {N}} \right\vert \sim 10^{-7} \times 10^{-24}$ e cm $\sim 10^{-31}$ e cm

Region to search for Beyond Standard Model (BSM) physics

If from nucleon EDMs with $\theta_{\text{QCD}} = 0$ **:**

$$
10^{-24} \,\mathrm{e\,cm} > |d_N| > 10^{-31} \,\mathrm{e\,cm}.
$$

Status of EDM searches [\[6,](#page-37-5) CYR '21]

Missing are direct EDM measurements:

- ▶ No direct measurements of electron: limit obtained from (ThO molecule).
- \blacktriangleright No direct measurements of proton: limit obtained from $^{199}_{80}$ Hg.

No measurement at all of deuteron EDM.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 7/ 63

Spin precession of particles with MDM and EDM

In rest frame of particle,

equation of motion for spin vector \vec{S} :

$$
\frac{\mathrm{d}\vec{S}}{\mathrm{d}t} = \vec{\Omega} \times \vec{S} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}.\tag{2}
$$

Put the protons in a ring

 \rightarrow Spin-precession in presence of MDMs and EDMs is described by Thomas-BMT equation [\[7\]](#page-37-6).

Frozen-spin

Spin precession frequency of particle relative to direction of flight:

$$
\vec{\Omega} = \vec{\Omega}_{\text{MDM}} - \vec{\Omega}_{\text{cyc}} \n= -\frac{q}{\gamma m} \left[G\gamma \vec{B}_{\perp} + (1 + G)\vec{B}_{\parallel} - \left(G\gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right].
$$
\n(3)

 $\Rightarrow \vec{\Omega} = 0$ called frozen spin, because momentum and spin stay aligned.

▶ In the absence of magnetic fields $(B_{\perp} = \vec{B_{\parallel}} = 0)$,

$$
\vec{\Omega} = 0, \text{ if } \left(G\gamma - \frac{\gamma}{\gamma^2 - 1} \right) = 0. \tag{4}
$$

If Possible only for particles with $G > 0$, such as proton $(G = 1.793)$ or electron $(G = 0.001)$.

For protons, [\(4\)](#page-8-0) leads to magic momentum:

$$
G - \frac{1}{\gamma^2 - 1} = 0 \Leftrightarrow G = \frac{m^2}{\rho^2} \quad \Rightarrow \quad \boxed{\rho = \frac{m}{\sqrt{G}} = 700.740 \text{ MeV c}^{-1}} \tag{5}
$$

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 9/ 63

Protons at magic momentum in pure electric ring:

Recipe to measure EDM of proton:

- 1. Place polarized particles in a storage ring.
- 2. Align spin along direction of flight at magic momentum.
	- \Rightarrow freeze horizontal spin precession.
- 3. Search for time development of vertical polarization.

New method to measure EDMs of charged particles:

 \triangleright Magic rings with spin frozen along momentum of particle.

Polarization buildup $P_v(t) \propto d$.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 10/63

Experimental requirements for storage ring EDM searches

High precision, primarily electric storage ring

- \triangleright Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- \blacktriangleright High beam intensity: $N = 4 \times 10^{10}$ particles per fill.
- \blacktriangleright High polarization of stored polarized hadrons: $P = 0.8$.
- large electric fields: $E = 10$ MV/m.
- **IDENT Long spin coherence time:** $\tau_{SCT} = 1000 \text{ s}$.
- \blacktriangleright Efficient polarimetry with
	- In large analyzing power: $A_y \simeq 0.6$,
	- **In and high efficiency detection** $f \approx 0.005$ **.**

In terms of numbers given above:

 \blacktriangleright This implies: $\sigma_{\text{stat}} = \frac{1}{\sqrt{M_c}}$ $N f \tau_{\text{SCT}} P A_y E$

$$
\Rightarrow \quad \boxed{\sigma_{\text{stat}}(1 \text{ yr}) = 10^{-29} \text{ e cm}}. \tag{6}
$$

Experimentalist's goal is to provide σ_{syst} to the same level.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 11/ 63

Progress toward storage ring EDM experiments

Complementing the spin physics tool box

COoler SYnchrotron COSY

- \triangleright Cooler and storage ring for (polarized) protons and deuterons.
- \triangleright Momenta $p = 0.3 3.7$ GeV/c.
- Phase-space cooled internal and extracted beams.

COSY formerly used as spin-physics machine for hadron physics:

- \triangleright Provides an ideal starting point for srEDM related R&D.
- Will be used for a first direct measurment of deuteron FDM.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 12/ 63

COSY Landscape

Principle of spin-coherence time measurement

Measurement procedure:

- 1. Vertically polarized deuterons stored at $p \simeq 1$ GeV c⁻¹.
- 2. Polarization flipped into horizontal plane with RF solenoid (\approx 200 ms).
- 3. Beam extracted on Carbon target with ramped bump or by heating.
- 4. Horizontal (in-plane) polarization determined from $U D$ asymmetry.

frev

෬

Detector system: EDDA [\[8\]](#page-38-0)

EDDA used to determine $\vec{p}\vec{p}$ elastic polarization observables:

- ► Deuterons at $p = 1$ GeV c⁻¹, $\gamma = 1.13$, and $\nu_s = \gamma G \simeq -0.161$
- \triangleright Spin-dependent differential cross section on unpolarized target:

$$
N_{\text{U,D}} \propto 1 \pm \frac{3}{2} p_{\text{x}} A_{\text{y}} \sin\left(\frac{v_{\text{s}} \cdot f_{\text{rev}}}{f_{\text{s}} = -120.7 \text{ kHz}} \cdot t\right), \text{ where } f_{\text{rev}} = 750.0 \text{ kHz.} \tag{7}
$$

Optimizations of spin-coherence time: [\[10,](#page-38-1) PRL '16]

Precise adjustments of three sextupole families in the ring

Spring 2015: Way beyond anybody's expectation:

- \blacktriangleright With about 10^9 stored deuterons.
- Long spin coherence time was one of main obstacles of srEDM experiments.
- ► Large value of τ_{SCT} of crucial importance [\(6\)](#page-10-0), since $\sigma_{stat} \propto \tau_{SCT}^{-1}$.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 16/ 63

Precision determination of the spin tune [\[11,](#page-38-3) PRL '15]

 \blacktriangleright allows us to monitor phase of measured asymmetry with (assumed) fixed spin tune $\nu_{\bm{s}}$ in a 100 s cycle:

$$
\nu_s(n) = \nu_s^{fix} + \frac{1}{2\pi} \frac{d\tilde{\phi}}{dn}
$$

= $\nu_s^{fix} + \Delta \nu_s(n)$ (8)

Experimental technique allows for:

> Spin tune ν_s determined to $\approx 10^{-8}$ in 2s time interval.

In a 100 s cycle at $t \approx 38$ s, interpolated spin tune amounts to $|\nu_{\sf s}|=(16097540628.3\pm9.7)\times10^{-11}$, i.e., $\Delta\nu_{\sf s}/\nu_{\sf s}\approx10^{-10}$.

 \Rightarrow new precision tool to study systematic effects in a storage ring.

Spin tune as a precision tool for accelerator physics

Applications of new technique:

- \blacktriangleright Study long term stability of an accelerator.
- \blacktriangleright Feedback system to stabilize phase of spin precession relative to phase of RF devices (\rightarrow phase-lock).
- \blacktriangleright Studies of machine imperfections.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 18/ 63

Phase locking spin precession in machine to device RF

At COSY, one cannot freeze the spin precession

 \Rightarrow To achieve precision for EDM, phase-locking is next best thing to do.

(b) feedback on (c) corrections 100 110 120 150 160 170 180 130 time in cycle [s]

Major achievement : Error of phase-lock $\sigma_{\phi} = 0.21$ rad [\[12,](#page-38-4) PRL '17].
First direct hadron EDM measurement with deuterons using COSY
Frank Rathmann (f.rathmann@fz-juelich.de)

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann @fz-juelich.de) 19/63

(a)

feedback off

First direct deuteron EDM measurement using COSY Precursor experiment

Highest EDM sensitivity shall be achieved with a new type of machine:

- \blacktriangleright An electrostatic circular storage ring, where
	- \triangleright centripetal force produced primarily by electric fields.
	- \triangleright E field couples to EDM and provides required sensitivity ($\lt 10^{-28}$ e cm).
	- In this environment, magnetic fields mean evil (since μ is large).

Idea of proof-of-principle experiment with RF Wien filter $(\vec{E} \times \vec{B})$:

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- \triangleright Use RF device operating on some harmonic of the spin-precession frequency:
	- \Rightarrow Phase lock between spin precession and device RF.
	- \Rightarrow Allows one to accumulate EDM effect as function of time in cycle (\sim 1000 s).

Goal of proof-of-principle experiment:

Show that conventional storage ring useable for first direct EDM measurement

RF Wien filter method

More aspects about the technique:

- ▶ RF Wien filter $(\vec{E} \times \vec{B})$ avoids coherent betatron oscillations in the beam:
	- In Lorentz force $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$ (JEDI paper on collective oscillations near quantum limit [\[13,](#page-39-0) PRAB '21]).
	- ▶ EDM measurement mode: $\vec{B} = (0, B_v, 0)$ and $\vec{E} = (E_x, 0, 0)$.

- \blacktriangleright Deuteron spins lie in machine plane.
- If $d \neq 0 \Rightarrow$ accumulation of vertical polarization P_v , during spin coherence time τ sct ~ 1000 s.

- in the range 10^{-23} to 10^{-24} e cm for d(deuteron) possible.
- **In Systematic effects: Alignment of magnetic elements, magnet imperfections,** imperfections of RF-Wien filter etc.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 21/ 63

Effect of EDM on stable spin axis of the ring Without RF WF

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 22/ 63

Beam particles move along z direction

- \triangleright Presence of an EDM $\Rightarrow \xi_{\text{FDM}} > 0$.
- \Rightarrow Spins precess around the \vec{c} axis.
- \Rightarrow Oscillating vertical polarization component $p_{v}(t)$ is generated.

Evolution for 10 turns $\vec{p}_0 = (0, 0, 1)$]

- \blacktriangleright $p_x(t)$, $p_z(t)$ and $p_y(t)$.
- Bunch revolution indicated as well.
- \blacktriangleright p_v oscillation amplitude corresponds to tilt angle ξ_{FDM} .

Model calculation of EDM buildup [\[18,](#page-40-0) PRAB '20] With **RF** Wien filter

Ideal COSY ring with deuterons at $p_d = 970$ MeV/c:

$$
\blacktriangleright \ \ G = -0.143, \ \gamma = 1.126, \ \boxed{f_s = f_{\sf rev}(\gamma G + K_{(=0)})} \approx 120.765 \ \sf kHz
$$

Enhanced RF field integral $f_{\text{ampl}} \times \int E_{\text{WF}} \cdot d\ell \approx 2200 \text{ kV (w/o ferrites)} [14, '16].$ $f_{\text{ampl}} \times \int E_{\text{WF}} \cdot d\ell \approx 2200 \text{ kV (w/o ferrites)} [14, '16].$ $f_{\text{ampl}} \times \int E_{\text{WF}} \cdot d\ell \approx 2200 \text{ kV (w/o ferrites)} [14, '16].$

Features of EDM induced vertical polarization buildup

► EDM accumulates in $p_y(t) \propto d_{\text{EDM}}$ [\[15](#page-39-2)[–17\]](#page-39-3).

 $\triangleright \rightarrow$ Full oscillation of vertical polarization $p_y(t)$ with proper feedback via pilot bunch.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann @fz-juelich.de) 23/63

Design of waveguide RF Wien filter

Joint Jülich – RWTH Aachen development:

- Institute of High Frequency Technology, RWTH Aachen University:
- ▶ Waveguide provides $\vec{E} \times \vec{B}$ by design.
- \triangleright Minimal \vec{F}_L by careful electromagnetic design of all components [\[14,](#page-39-1) '16].

View along the beam axis in the RF Wien filter

Fast switches for RF power of Wien filter

GaN HEMT-based solution (Gallium Nitride Transistors):

- **►** Short switch on/off times (\approx few ns).
- High power capabilities (\approx few kV).
- On board power damping.

Installed switches:

- \triangleright capable to handle up to 200 W each
- \triangleright permits system to run near a total power of 0.8 kW in pulsed mode

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 26/ 63

- ▶ symmetric switch on/off times (\approx few ns).
- -30 dB power damping.

Bunch-selective spin manipulation, EDM co-magnetometry World-first (September 2020 JEDI, with d at 970 MeV/c)

bunches $\left(\overline{1} \right)$ and $\left(\overline{2} \right)$ orbit at $f_{\text{rev}} \approx 750$ kHz:

- \triangleright coherent ensembles in ring plane
- recessing at $f_s \approx 120$ kHz
- ightharpoonup waveguide RF WF [\[14\]](#page-39-1) with radial field B_r
	- on resonance¹ at $f_{\text{WF}} = 871.430\,646\,\text{kHz}$
- Apply bunch-selective gating of RF Wien filter in (1) :
	- 2) oscillating $p_y(t)$, $\overline{1}$) not affected (pilot bunch \rightarrow co-magnetometer)

 $^1f_\text{WF}=K\cdot f_\text{rev}+f_\text{s}=(K+\nu_\text{s})f_\text{rev}$, where $K\in\mathbb{Z}$ and ν_s is spin tune

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 27/ 63

Strength of EDM resonance

EDM induced polarization oscillation,

 \triangleright can generally be described by $p_{y}(t) = a \sin(\Omega^{p_{y}} t + \phi_{\mathsf{RF}}),$

y perpendicular to ring plane.

 \blacktriangleright EDM resonance strength defined as ratio of angular frequency Ω^{p_y} to orbital angular frequency $\Omega^{\sf rev}$,

$$
\varepsilon^{\text{EDM}} = \frac{\Omega^{\rho_y}}{\Omega^{\text{rev}}}\,,
$$

How is the EDM effect actually measured?

Two features are simultaneously applied in the ring:

- 1. the RF Wien filter is rotated by a small angle. This generates a tiny radial magnetic RF field, which affects the spin evolution.
- 2. In addition, a longitudinal magnetic field in the ring opposite to the Wien filter, about which the spins rotate as well.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 28/ 63

Expectation: $d = 10^{-20}$ e cm in ideal COSY ring [\[18,](#page-40-0) PRAB '20]

Function describing surface

Surface described by elliptic paraboloid $[18, PRAB'20]$ $[18, PRAB'20]$:

$$
\left(\varepsilon^{\text{EDM}}\right)^2 = \frac{\psi_{\text{WF}}^2}{16\pi^2} \cdot \left[A \left(\phi^{\text{WF}} - \phi_0^{\text{WF}}\right)^2 + B \left(\frac{\chi^{\text{Sol}}}{2 \sin \pi \nu_s^{(2)}} + \chi_0^{\text{Sol}}\right)^2 + C \right].
$$

\nA and B account for possible deviations of ε^{EDM} along ϕ^{WF} and $\chi^{\text{Sol}}.$
\nFirst direct hadron EDM measurement with deuterons using COSY

.

Expectation: $d = 10^{-18}$ e cm in ideal COSY ring [\[18,](#page-40-0) PRAB '20]

Function describing surface

 \triangleright Surface described by elliptic paraboloid [\[18,](#page-40-0) PRAB '20]:

$$
\left(\varepsilon^{\text{EDM}}\right)^2 = \frac{\psi_{\text{WF}}^2}{16\pi^2} \cdot \left[A\left(\phi^{\text{WF}} - \phi_0^{\text{WF}}\right)^2 + B\left(\frac{\chi^{\text{Sol}}}{2\sin\pi\nu_s^{(2)}} + \chi_0^{\text{Sol}}\right)^2 + C\right].
$$

\nA and B account for possible deviations of ε^{EDM} along ϕ^{WF} and $\chi^{\text{Sol}}.$
\nFirst direct hadron EDM measurement with deuterons using COSY

.

Preliminary results of precursor experiment I Wien filter mapping

Observation of $p_v(t)$ with two stored bunches: Signal and pilot bunch

 \blacktriangleright Signal bunch

Decoherence clearly visible in signal bunch.

No oscillations in pilot bunch.

Determine oscillation frequencies $\Omega^{p_y} \to W$ ien filter map via $\varepsilon^{\text{EDM}} = \frac{\Omega^{p_y}}{\Omega^{\text{rev}}}$ [First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 31/ 63

Preliminary results of precursor experiment II

Example map of resonance strength $\varepsilon^{\rm EDM}$

Determination of minimum via fit with surface function:

$$
\triangleright
$$
 $\left| \phi_0^{\text{WF}} / \text{mrad} = -2.05 \pm 0.02 \right|$ and $\left| \xi_0^{\text{Sol}} / \text{mrad} = 4.32 \pm 0.06 \right|$

Extraction of deuteron EDM:

- 1. Minimum determines spin rotation axis (3-vector) at RF WF including EDM.
- 2. Spin tracking in COSY lattice \rightarrow orientation of stable spin axis w/o EDM.
- 3. EDM is obtained from the difference of 1. and 2.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 32/ 63

Two runs for deuteron precursor EDM measurement

- 1. Nov-Dec 2018: feedback during 1st quarter of oscillation period p_v
- 2. Feb-Mar 2021: feedback via pilot bunch \rightarrow observation of many oscillations.

Improvements between runs:

 \triangleright COSY:

- 1. Better understanding of injection process into COSY [\[19\]](#page-40-1)
- 2. Alignment campaigns of COSY magnet system
- 3. Beam-based alignment [\[20\]](#page-40-2)
- 4. Improvements of COSY signals and distribution
- 5. New tools for fast tune and chromaticity measurements; EPICS archiving
- 6. New JEDI Polarimeter[\[21,](#page-40-3) [22\]](#page-40-4)

 \blacktriangleright RF WF

- 1. 8-channel Zurich Instruments signal generator to feed signals homogeneously
- 2. Improved matching of RF Wien filter
	- \triangleright beam oscillations $\approx 1 \,\mu$ m at BPM opposite WF [\[13,](#page-39-0) PRAB '21]).
- 3. Optimization of Rogowski BPM system [\[23\]](#page-40-5)
- 4. Upgrade of slow-control system
- 5. Implementation of fast RF switches

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 33/ 63

Strategy toward dedicated EDM ring

COM Collaboration: <http://pbc.web.cern.ch/edm/edm-default.htm>

Stages of project and time frame toward dedicated EDM ring: [\[6,](#page-37-5) CYR '21]

Next step: Stage 2: Prototype EDM storage ring (PTR)

Build demonstrator for charged-particle EDM

- Project prepared by a new CPEDM collaboration (CERN $+$ JEDI $+$ srEDM).
- Physics Beyond Collider process (CERN), and the European Strategy for Particle Physics Update.

100 m circumference

- \triangleright p at 30 MeV all-electric CW-CCW beams operation
- \triangleright p at 45 MeV frozen spin including additional vertical magnetic fields

Challenges – open issues

- All electric & E/B combined deflection
- \blacktriangleright Storage time
- \triangleright CW-CCW operation with orbit difference to pm

Primary purpose of PTR

- \blacktriangleright study open issues.
- first direct proton EDM measurement.

- \blacktriangleright Spin-coherence time
- **Polarimetry**
- \blacktriangleright Magnetic moment effects
- Stochastic cooling

Summary I

Search for charged hadron particle EDMs (p, d, l) light ions):

- \triangleright New window to disentangle sources of CP violation, and to possibly explain matter-antimatter asymmetry of the Universe.
	- Search for static charged particle EDMs $(p, d, \, 3$ He)
		- \blacktriangleright EDMs \rightarrow probes of CP-violating interactions
		- \blacktriangleright Matter-antimatter asymmetry
	- \blacktriangleright Search for oscillating EDMs
		- \blacktriangleright Axion gluon coupling
		- \blacktriangleright Dark matter search
	- \triangleright Potential sensitivity to gravitational effects [\[24\]](#page-41-0).
- Results and achievements at COSY are summarized in $[6, App. A]$ $[6, App. A]$.

Summary II

Present EDM measurement using RF Wien filter

- \triangleright JEDI with steady progress in spin dynamics relevant to future EDM searches.
- \triangleright COSY remains a unique facility for such studies.
- \blacktriangleright First direct JEDI deuteron EDM measurement at COSY:
	- \blacktriangleright Two runs: 6 wk run Nov-Dec '18, and 6 wk run Feb-Mar '21.
	- \triangleright Many upgrades and improvements of COSY and RF Wien filter.
	- \triangleright Data analysis and systematics studies in progress.
	- Anticipated sensitivity 10^{-18} to 10^{-20} e cm.

Strong interest of high energy community in srEDM searches

- \triangleright Protons and light nuclei as part of physics program of the post-LHC era:
	- ▶ Physics Beyond Collider process (CERN), and
	- \blacktriangleright European Strategy for Particle Physics Update.
	- \triangleright As part of this process, EU Design Study for PTR:
		- ▶ Continuation of CPEDM work described in CERN Yellow Report [\[6,](#page-37-5) '21].
		- \triangleright HORIZON-INFRA-2022-DEV-01-01: Research infrastructure concept
		- Partners: CERN, RWTH, INFN, MPI-HD, Liverpool, Krakow
		- \blacktriangleright CERN mandate to contribute to this effort.
		- **Dossible host sites: CERN or COSY.**

- [1] C. L. Bennett et al. (WMAP), "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results," Astrophys. J. Suppl. 148, 1 (2003), <astro-ph/0302207>.
- [2] V. Barger, J. P. Kneller, H.-S. Lee, D. Marfatia, and G. Steigman, "Effective number of neutrinos and baryon asymmetry from BBN and WMAP," Phys. Lett. B566, 8 (2003), <hep-ph/0305075>.
- [3] W. Bernreuther, "CP violation and baryogenesis," Lect. Notes Phys. 591, 237 (2002), <hep-ph/0205279>.
- [4] J. Bsaisou, J. de Vries, C. Hanhart, S. Liebig, U.-G. Meißner, D. Minossi, A. Nogga, and A. Wirzba, "Nuclear electric dipole moments in chiral effective field theory," Journal of High Energy Physics 2015, 1 (2015), ISSN 1029-8479, URL [http://dx.doi.org/10.1007/JHEP03\(2015\)104](http://dx.doi.org/10.1007/JHEP03(2015)104).
- [5] I. B. Khriplovich and S. K. Lamoreaux, CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules (Berlin, Germany: Springer (1997) 230 p, 1997).
- [6] F. Abusaif et al. (CPEDM), Storage Ring to Search for Electric Dipole Moments of Charged Particles – Feasibility Study (CERN, Geneva, 2021), <1912.07881>.
- [7] T. Fukuyama and A. J. Silenko, "Derivation of Generalized Thomas-Bargmann-Michel-Telegdi Equation for a Particle with Electric Dipole Moment," Int. J. Mod. Phys. A28, 1350147 (2013), URL <https://www.worldscientific.com/doi/abs/10.1142/S0217751X13501479>.

References II

- [8] D. Albers et al., "A Precision measurement of pp elastic scattering cross-sections at intermediate energies," Eur. Phys. J. A22, 125 (2004).
- [9] I. Vasserman, P. Vorobyov, E. Gluskin, P. Ivanov, I. Koop, G. Kezerashvili, A. Lysenko, I. Nesterenko, E. Perevedentsev, A. Mikhailichenko, et al., "Comparison of the electron and positron anomalous magnetic moments: Experiment 1987," Physics Letters B 198, 302 (1987), ISSN 0370-2693, URL <http://www.sciencedirect.com/science/article/pii/0370269387915152>.
- [10] G. Guidoboni, E. Stephenson, S. Andrianov, W. Augustyniak, Z. Bagdasarian, M. Bai, M. Baylac, W. Bernreuther, S. Bertelli, M. Berz, et al. (JEDI), "How to reach a thousand-second in-plane polarization lifetime with 0.97 gev/c deuterons in a storage ring," Phys. Rev. Lett. 117, 054801 (2016), URL <http://link.aps.org/doi/10.1103/PhysRevLett.117.054801>.
- [11] D. Eversmann, V. Hejny, F. Hinder, A. Kacharava, J. Pretz, F. Rathmann, M. Rosenthal, F. Trinkel, S. Andrianov, W. Augustyniak, et al. (JEDI), "New method for a continuous determination of the spin tune in storage rings and implications for precision experiments," Phys. Rev. Lett. 115, 094801 (2015), URL <https://link.aps.org/doi/10.1103/PhysRevLett.115.094801>.
- [12] N. Hempelmann, V. Hejny, J. Pretz, E. Stephenson, W. Augustyniak, Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, et al. (JEDI), "Phase locking the spin precession in a storage ring," Phys. Rev. Lett. 119, 014801 (2017), URL <https://link.aps.org/doi/10.1103/PhysRevLett.119.014801>.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 39/ 63

References III

[13] J. Slim, N. N. Nikolaev, F. Rathmann, A. Wirzba, A. Nass, V. Hejny, J. Pretz, H. Soltner, F. Abusaif, A. Aggarwal, et al. (JEDI), "First detection of collective oscillations of a stored deuteron beam with an amplitude close to the quantum limit," Phys. Rev. Accel. Beams 24, 124601 (2021), URL

<https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.124601>.

- [14] J. Slim, R. Gebel, D. Heberling, F. Hinder, D. Hölscher, A. Lehrach, B. Lorentz, S. Mey, A. Nass, F. Rathmann, et al., "Electromagnetic simulation and design of a novel waveguide rf wien filter for electric dipole moment measurements of protons and deuterons," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016), ISSN 0168-9002, URL <http://www.sciencedirect.com/science/article/pii/S0168900216303710>.
- [15] A. Saleev, N. N. Nikolaev, F. Rathmann, W. Augustyniak, Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, G. Ciullo, et al. (JEDI), "Spin tune mapping as a novel tool to probe the spin dynamics in storage rings," Phys. Rev. Accel. Beams 20, 072801 (2017), URL <https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.072801>.
- [16] F. Rathmann, A. Saleev, and N. N. Nikolaev, "The search for electric dipole moments of light ions in storage rings," J. Phys. Conf. Ser. 447, 012011 (2013).
- [17] Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, "Resonance method of electric-dipole-moment measurements in storage rings," Phys. Rev. Lett. 96, 214802 (2006), URL <http://link.aps.org/doi/10.1103/PhysRevLett.96.214802>.

References IV

- [18] F. Rathmann, N. N. Nikolaev, and J. Slim, "Spin dynamics investigations for the electric dipole moment experiment," Phys. Rev. Accel. Beams 23, 024601 (2020), URL <https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.024601>.
- [19] B. Alberdi Esuain, Master's thesis, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University (2019), optimization of Injection in COSY, URL http://collaborations.fz-juelich.de/ikp/jedi/public_files/theses/main.pdf.
- [20] T. Wagner, A. Nass, J. Pretz, F. Abusaif, A. Aggarwal, A. Andres, I. Bekman, N. Canale, I. Ciepal, G. Ciullo, et al., "Beam-based alignment at the cooler synchrotron COSY as a prerequisite for an electric dipole moment measurement," Journal of Instrumentation 16, T02001 (2021), URL <https://doi.org/10.1088/1748-0221/16/02/t02001>.
- [21] I. Keshelashvili, F. Müller, D. Mchedlishvili, and D. Shergelashvili (JEDI), "A new approach: LYSO based polarimetry for the EDM measurements," J. Phys. Conf. Ser. 1162, 012029 (2019).
- [22] D. Shergelashvili, D. Mchedlishvili, F. Müller, and I. Keshelashvili (Jedi), "Development of LYSO detector modules for a charge-particle EDM polarimeter," PoS SPIN2018, 145 (2019).
- [23] F. Abusaif (JEDI), "Development of compact highly sensitive beam position monitors for storage rings," Hyperfine Interactions 240, 4 (2019), URL <https://link.springer.com/article/10.1007/s10751-018-1543-x>.

References V

- [24] see, e.g., the presentations at the ARIES WP6 Workshop: Storage Rings and Gravitational Waves "SRGW2021", 2 February - 11 March 2021, available from <https://indico.cern.ch/event/982987>.
- [25] J. Slim, A. Nass, F. Rathmann, H. Soltner, G. Tagliente, and D. Heberling, "The driving circuit of the waveguide RF Wien filter for the deuteron EDM precursor experiment at COSY," JINST 15, P03021 (2020), URL <https://iopscience.iop.org/article/10.1088/1748-0221/15/03/P03021/pdf>.
- [26] C. Weidemann, F. Rathmann, H. J. Stein, B. Lorentz, Z. Bagdasarian, L. Barion, S. Barsov, U. Bechstedt, S. Bertelli, D. Chiladze, et al., "Toward polarized antiprotons: Machine development for spin-filtering experiments," Phys. Rev. ST Accel. Beams 18, 020101 (2015), URL <http://link.aps.org/doi/10.1103/PhysRevSTAB.18.020101>.
- [27] N. Brantjes, V. Dzordzhadze, R. Gebel, F. Gonnella, F. Gray, D. van der Hoek, A. Imig, W. Kruithof, D. Lazarus, A. Lehrach, et al., "Correcting systematic errors in high-sensitivity deuteron polarization measurements," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 664, 49 (2012), ISSN 0168-9002, URL <http://www.sciencedirect.com/science/article/pii/S016890021101850X>.
- [28] F. Müller et al., "A New Beam Polarimeter at COSY to Search for Electric Dipole Moments of Charged Particles," JINST 15, P12005 (2020), <2010.13536>.

References VI

- [29] M. Ieiri, H. Sakaguchi, M. Nakamura, H. Sakamoto, H. Ogawa, M. Yosol, T. Ichihara, N. Isshiki, Y. Takeuchi, H. Togawa, et al., "A multifoil carbon polarimeter for protons between 20 and 84 mev," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 257, 253 (1987), ISSN 0168-9002, URL <https://www.sciencedirect.com/science/article/pii/0168900287907443>.
- [30] F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," (2019), <https://e-publishing.cern.ch/index.php/CYRM/issue/view/132>.
- [31] P. W. Graham and S. Rajendran, "Axion dark matter detection with cold molecules," Phys. Rev. D 84, 055013 (2011), URL <https://link.aps.org/doi/10.1103/PhysRevD.84.055013>.
- [32] S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park, and Y. K. Semertzidis, "Axion dark matter search using the storage ring EDM method," PoS PSTP2017, 036 (2018), <1710.05271>.

Spare Slides

Search for charged particle EDMs with frozen spins Magic storage rings

For any sign of G, in combined electric and magnetic machine:

 \blacktriangleright Generalized solution for magic momentum

where E_x is radial, and B_y vertical field.

$$
\frac{E_x}{B_y} = \frac{Gc\beta\gamma^2}{1 - G\beta^2\gamma^2},
$$
\n(9)

Some configurations for circular machine with fixed radius $r = 25$ m:

Offers possibility to determine EDMs of

protons, deuterons, and helions in one and the same machine.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 45/ 63

Spin coherence time

Most polarization experiments don't care about coherence of spins along \vec{n}_{co}

In machines with frozen spins:

Buildup time t to observe polarization $P_v(t)$ limited by τ_{SCT} .

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 46/ 63

Study of machine imperfections

JEDI developed new method to investigate magnetic machine imperfections based on highly accurate determination of spin-tune [\[15,](#page-39-2) PRAB '17].

Spin tune mapping

- \triangleright Two cooler solenoids act as spin rotators \Rightarrow generate artificial imperfection fields.
- Measure spin tune shift vs spin kicks.

- \triangleright Position of saddle point determines tilt of stable spin axis by magnetic imperfections.
- \triangleright Control of background from MDM at level $\Delta\epsilon = 2.8\times10^{-6}$ rad.
- \triangleright Systematics-limited sensitivity for deuteron EDM at COSY $\sigma_d \approx 10^{-20}$ e cm.

Driving circuit [\[25\]](#page-41-1)

Realization with load resistor and tunable elements (L's and C's):

 \triangleright Design layout using four separate 1 kW power amplifiers.

Circuit fully operational

- Tuneable elements² allow [\[14\]](#page-39-1):
	- minimization of Lorentz-force, and
	- \blacktriangleright velocity matching to β of the beam.
- Power upgrade to 4×2 kW: $\int B_z dz = 0.218$ T mm possible.

 2 built by Fa. Barthel, <http://www.barthel-hf.de>.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 48/ 63

[Spare slides](#page-43-0) [RF Wien filter](#page-47-0)

RF Wien filter Installation at COSY

▶ RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled 25 Ω resistor.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 49/63

Frequencies of RF Wien filter [\[18\]](#page-40-0)

Spin resonance condition:

$$
f_{WF} = f_{rev} (\gamma G \pm K), k \in \mathbb{Z}.
$$

- \triangleright RF Wien filter operates at frequencies between 0 to 2 MHz,
- \triangleright Open symbols not reachable with present setup of driving circuit, *i.e.*,
	- \triangleright deuterons at $K = 0$ (-120.8 kHz), and
	- \triangleright protons at $K = -2$ (39.4 kHz).

PTR lattice design (protons)

Basic beam parameters and layout [\[6,](#page-37-5) chap. 7]

 \triangleright p at 30 MeV all-electric CW-CCW beams operation \triangleright p at 30 to 45 MeV frozen spin, with additional vertical B field

Beam transfer and injection system

S. Martin, R. Talman, C. Carli, M. Haj Tahar: [\[6,](#page-37-5) chap. 7.8]

Test at COSY: spin manipulation after injection appears feasible:

- \triangleright could simplify injection scheme, no need for fast switches
- \triangleright orient spin directions in bunches after injection of DC beam

Electrostatic deflector

with additional magnetic bend

\triangleright Concept for electrostatic deflector element available [\[6,](#page-37-5) chap. 7.6].

▶ Next step: build prototype with RWTH-Aachen (IAEW High Voltage)

 \triangleright Studies of straight E/B deflector element to improve voltage holding capability ongoing at Jülich.

Magnetic bends

- \triangleright Concept for magnetic add-on to deflector available $[6,$ chap. 7.6].
- **IDED** Magnetic system (cos θ) placed outside the vacuum tube.

I Magnet system included in prototype development with RWTH-Aachen (IAEW High Voltage)

Multipole elements

Quadrupoles

- \triangleright Design of electrostatic elements by J. Borburgh (CERN) [\[6,](#page-37-5) chap. 9])
- \blacktriangleright Electrostatic quadrupoles
	- **D** aperture diameter 80 mm, applied ± 20 kV.
	- \triangleright Simulated design with vacuum chamber of 400 mm diameter.

- PTR quadrupoles max. pole tip potential 30 kV (margin for conditioning)
- \triangleright 3D design available:
	- \blacktriangleright sextupole, octupole and higher harmonics reasonable
	- \triangleright 800 mm longitudinal length and radial diameter of 620 mm.

Needs strong support

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 55/ 63

Vacuum system

In Ring vacuum given by minimum required beam lifetime of about 1000 s.

- \blacktriangleright N₂ partial pressures below 10⁻¹² mbar
- ► H₂ partial pressures below 5×10^{-11} mbar.
- ► Stochastic cooling rate better than 5×10^{-3} mm mrad/s.
- \triangleright non-vibrational system that avoids generation of magnetic fields
	- \triangleright Cryogenic or NEG pumping systems may be used:
		- 1. NEG material becomes saturated after several pump-downs.
		- 2. Aging NEG material leaves dust particles in vacuum vessel.
		- 3. PTR will have significant number of pump-downs during program.
		- 4. High-voltage system requires excellent vacuum.
		- 5. System based on NEG cartouches [\[26\]](#page-41-2) under discussion.
- \triangleright Mechanical alignment of elements inside vacuum pipe of 400 mm diameter
	- \blacktriangleright active compensation of oscillations/ground motion
- \blacktriangleright Shielding (passive versus active)

Stochastic cooling

- \triangleright Control proton beam emittance during measurements: 30 MeV to 45 MeV.
- ► Cooling should compensate emittance growth of 5×10^{-3} mm mrad/s.
	- I Used successfully at COSY to compensate emittance growth of beam during interaction with internal gas targets.
	- \blacktriangleright Interplay between stochastic cooling and evolution of horizontally polarized ensemble of particles unknown.
	- \triangleright Studies of emittance growth and spin coherence time not possible at any other ring prior to PTR.
- Aim: provide basic design of stochastic cooling system for PTR.

RF Cavity

- \triangleright Azimuthal magnetic fields of RF cavities lead to spin rotations of the magnetic moment.
- \blacktriangleright Even in case of a perfectly aligned cavity, individual particles experience horizontal magnetic fields and spin rotations into vertical and horizontal directions.
- \blacktriangleright Effect on EDM measurement strongly suppressed:
	- In cancellation of effect for different particles crossing cavity gap each turn with different betatron phases and transverse positions.
- \triangleright Design of RF cavity required that minimizes unwanted spin rotations.

Spin manipulation tools

- \triangleright Vertical polarisation of stored beam rotated into horizontal plane by longitudinal field of RF solenoid.
	- \blacktriangleright Typical ramp-up times from vertical to horizontal polarisation are \approx 200 ms.
	- \triangleright optimize design for PTR.

 \triangleright RF Wien filter [\[14\]](#page-39-1) applies transverse magnetic fields to spin, while excerting minimal Lorentz force on beam:

- \triangleright COSY: spin manipulation of individual bunches by fast RF switches feasible.
- \triangleright optimize design for PTR, need two of them for CW-CCW operations.

High-precision beam polarimeter (... with pellet extraction)

- \blacktriangleright dC (pC) scattering using white noise extraction works for relative polarization errors $\Delta p/p = 10^{-6}$ [\[27\]](#page-41-3).
- \triangleright Polarimeter system for dedicated ring described in [\[21,](#page-40-3) [22,](#page-40-4) [28\]](#page-41-4).
- Polarization profile determination at low energies:
	- \triangleright Carbon multifoil polarimeter [\[29\]](#page-42-0) based on Silicon detectors with pellet extraction
		- ▶ (PhD J. Gooding, University of Liverpool).
	- \blacktriangleright Ballistic Si pellet target for homogeneous beam sampling [\[30,](#page-42-1) App. K].
	- Eloss of 100 keV in 50 μ m pellet \rightarrow track displaced by 2.5 cm behind 90◦ bend.

Beam diagnostics

Beam Position Monitors

Development of prototype BPM based on segmented toroidal coil [\[23\]](#page-40-5)

 \blacktriangleright Rogowski coil

- \triangleright advantages over conventional split-cylinder BPMs
	- In short insertion length \rightarrow many BPMs can be installed
	- \blacktriangleright inexpensive
	- \blacktriangleright high sensitivity to position of bunched beams
- \triangleright Other diagnostics needed:
	- Beam profile monitor, non-destructive for emittance measurement
	- \triangleright BCT, also to adjust CW/CCW beam currents

(Oscillating) Axion-EDM search using storage ring

Motivation: Paper by Graham and Rajendran [\[31,](#page-42-2) 2011]

 \triangleright Oscillating axion field is coupled with gluons and induces an oscillating EDM in hadronic particles.

Measurement principle:

- ► When oscillating EDM resonates with particle $g 2$ precession frequency in the storage ring, the EDM precession can be accumulated.
- Due to strong effective electric field (from $\vec{v} \times \vec{B}$), sensitivity improved significantly.

[First direct hadron EDM measurement with deuterons using COSY](#page-0-0) Frank Rathmann (f.rathmann@fz-juelich.de) 62/ 63

Courtesy of Seongtae Park (IBS, Daejeon, ROK)

Limits for axion-gluon coupled to oscillating EDM

Realization

- \triangleright No new/additional equipment required!
- First test experiment carried out in $1/2019$ in magnetic storage ring COSY.
- Data analysis well in progress.