HEPscore benchmark status

D. Giordano (CERN/IT)

on behalf of HEPiX CPU Benchmarking WG & HEPscore Deployment TF hepix-cpu-benchmark@hepix.org

WLCG Accounting TF 25 Nov 2021

HEP Benchmarks project goal

- ☐ Identify a replacement of HS06 for CPUs
- Reasons
 - HS06 is not supported anymore by SPEC (since 2018)
 - Signs of discrepancies w.r.t. the "run2" LHC Experiments' applications
 - Could be worse with run3 applications
 - HS06 is not a HEP-specific benchmark
 - Desire to apply the same benchmark to other architectures (ARM, GPUs, ...)
- □ HEPscore is proposed by the HEPiX Benchmarking WG
 - Uses the workloads of the experiments as application benchmarks
 - Combine them in a single score as HS06 does

Achievements

- ☐ HEP Workloads "containeraized" and fully validated
 - LHC Experiments (Run2 version) + Belle II
 - All production steps (Gen, Sim, Digi, Reco) available
 - GPU workloads <u>SimpleTrack</u> (LHC simulation)
- ☐ HEPscore v1.2 released
 - Singularity & Docker supported, improved report, Python wheels available
 - Default config validated up to 256 cores
- ☐ HEP Benchmark Suite v2.1 released.
 - Metadata section with detailed HW information, install as unprivileged user, python wheels available
- HS06 extended to ARM CPUs
- ☐ HEPiX Spring presentation & Demo

Achievements (II)

- ☐ Analysis of HEPscore Vs HS06 measurements
 - Using the <u>demonstrator</u> benchmark, HEPscore_{β},
 - Outcome: it may be possible to create a new benchmark for CPUs based on HEP applications
 - Presented in the <u>Autumn HEPiX</u> workshop
 - Publication accepted by Computing and Software for Big Science
 - "HEPiX benchmarking solution for WLCG computing resources"
- ☐ Positive feedback from early adopters

Computing and Software for Big Science manuscript No. (will be inserted by the editor)

HEPiX benchmarking solution for WLCG computing resources

Domenico Giordano¹ - Manfred Alef² - Luca Atzori¹ - Jean-Michel Barbet³ - Olga Datskowa¹ - Maria Girone¹ - Christopher Hollowell⁶ -Martina Javurkova⁴ - Riccardo Maganza¹ - Miguel F. Medeiros¹ -Michele Michelotto⁵ - Lorenzo Rimaldi⁶ - Andrea Sciabà¹ - Randall J. Sobie⁷ - David Southwick^{1,6} - Tristan Sullivan⁷ - Andrea Valassi¹

30 August 2021

Abstract The HEPiX Benchmarking Working Group 1 Introduction has developed a framework to benchmark the perfor-

Impression of HEPSuite

- The results produced by HEPScore benchmark felt more accurate.
- There was less difference from a performance to cost ratio between the CPUs.
- It was easy for both us and the vendors to run!
- For a benchmark suite I wasn't confident it was producing standard results.
 - By default the HEPSpec06 score was 64 bit, when we have always had to use 32 bit for all the WLCG pledges / accounting.
 - The SPEC17 scores didn't match up with scores reported on the website.

Alastair Dewhurst, 6th October 2021

Current work

- Inclusion of new WLCG workloads in the HEP Workloads catalogue
 - In collaboration with the HEPscore deployment Task Force
 - Identified WLs other than LHC experiments
- Start a campaign of measurements
 - Multiple CPU models from several sites
 - Multiple benchmarks (HS06, SPEC CPU 2017, HEPscore)
- Objective
 - Compare HEP WL performance, identify representative subset for what will be HEPscore2X configuration
 - Compare performance w.r.t. SPEC benchmarks

	A	В	C	D	E	F	G	Н	1
1	WL	Responsible	os	Platform	WL developed in a git fork (if relevant)	Merged in HEP- Worklaods repo	Built	Validated	Reference scor
2	Alice Sim	S. Piano	cc7	x86					
3	Atlas simMT	W. Lamp	cc7	x86					
4	LHCb gen-sim 2021	A. Valassi	cc7	x86					
5	CMS gen-sim Run3	A. Sciabà	cc7	x86/arm			x86		
6	CMS Digi Run3	A. Sciabà	cc7	x86/arm			x86		
7	CMS Reco Run3	A. Sciabà	cc7	x86/arm			x86		
В	Belle2	R. Sobie	cc7	x86					
9	Dune	A. Mc Nab	cc7	x86	https://gitlab.cern.ch				
.0	Juno	X. Yan	cc7	x86	https://gitlab.cern.ch				
1	Grav-Wave	J. Willis	cc7	x86	https://git.ligo.org/jd	V.			
	Madgraph	A. Valassi	cc7	x86 / GPU					
.3									
.5	Legend	Latest changes are in lighter colours							
6	Ok								
.7	In progress								
8	Blocker								
9	Not started yet								

HEP Benchmark Suite

- ☐ Is the toolkit to run and collect results centrally
 - Execution of multiple benchamrks; document validation;
 metadata enrichment
- ☐ Used @ CERN in the enrollment of all servers. Several benchmark scores are collected an monitored

Conclusions

- ☐ The HEP Benchmarks project is progressing well
- ☐ The composition of HEPscore2x will be likely defined in 2022
 - After approval of WLCG, it's reasonable to envisage a period of coexistence of HS06 and HEPscore benchmarks

- ☐ Feedback and support request welcome in the dedicated
 - Discourse Forum and gitlab issues tracker

Benchmark comparing "speed factors"

- ☐ In order to compare servers HS06 and HEP-Score implement the geometric mean approach. Needs:
- $ar{x} = \left(\prod_{i=1}^n x_i^{w_i}
 ight)^{1/\sum_{i=1}^n w_i}$
- https://en.wikipedia.org/wiki/Weighted_geometric_mean

• a set of reference workloads (WLs)

Life Science (DBCLS) is licensed under CC BY 4.0

- a measure of performance per WL (m_i), that typically goes as [1/s] (eg. can be the event throughput)
- a reference machine
- The score S of a server (srv) is defined as the **geometric mean** of the **speed factors** $x_i(srv, ref) = m_i(srv)/m_i(ref)$ respect to the reference machine (ref)
 - i.e. "speed" is normalised respect to the reference machine "speed"
- \Box The relative score between srv_A and srv_B is the ratio of the scores S(srv,ref), this is still a geometric mean of speed factors

	WL_1		WL_2		WL_n		Score	S(A,B)
Ref. Srv	m₁(ref)	1 (by def)	m ₂ (ref)	1 (by def)	m _n (ref)	1 (by def)	$\left(\prod_{i=1}^n x_i\right)^{\overline{n}}$	
Srv A	$m_1(A)$	$x_1(A,ref)$	m ₂ (A)	x_2 (A,ref)	m _n (A)	$x_n(A,ref)$ S(A,ref)	S(A,ref)	S(A, ref)
Srv B	m ₁ (B)	x_1 (B,ref)	m ₂ (B)	x_2 (B,ref)	m _n (B)	x_n (B,ref)	S(B,ref)	$\overline{S(B,ref)}$

