Characterization of Trench-Isolated LGADs before and after irradiation

<u>M. Ferrero</u>, R. Arcidiacono, A. Bisht, G. Borghi, M. Boscardin, N. Cartiglia, M. Centis Vignali, F. Ficorella, O. Hammad Ali, G. Gioachin, M. Mandurrino, L. Menzio, R. Mulargia, G. Paternoster, F. Siviero, V. Sola, M. Tornago

Part of this work has been performed in the framework of RD50 CERN collaboration

Motivation

Traditional LGAD

Standard segmentation based on: Junction Termination Extension (JTE) > p-stop implant

No-gain region of 60-120 μm

Trench-Isolated LGAD (TI-LGAD)

Segmentation based on Depth Trenches filled with Oxide

No-gain region of ~10 μm (Fill Factor improvement)

Process parameters:

- Three trench depths: D1 < D2 < D3</p>
- Three trench processes: P1; P2; P3

Additional Information:

- \blacktriangleright Active thickness of 45 μ m
- p-bulk inverted (in new sensors)
- Boron High Diffusion gain implant
- No carbon co-implantation

Wafer	Trench depth	Trench process
1	D2	P1
7	D2	P2
9	D2	P3
11	D1	P1
16	D3	P2

 \sim

Process parameters:

- Three trench depths: D1 < D2 < D3</p>
- Three trench processes: P1; P2; P3

Additional Information:

- \blacktriangleright Active thickness of 45 μ m
- p-bulk inverted (in new sensors)
- Boron High Diffusion gain implant
- No carbon co-implantation

Inter-pixel layout:

- One/Two trenches (1TR/2TR) to separate pixels
- Four pixel borders: (most aggressive) V1<V2<V3<V4 (least aggressive)

Wafer	Trench depth	Trench process
1	D2	P1
7	D2	P2
9	D2	P3
11	D1	P1
16	D3	P2

Pixel border Layout

1 trench (1TR)

2 trenches (1TR)

Process parameters:

- Three trench depths: D1 < D2 < D3</p>
- Three trench processes: P1; P2; P3

Additional Information:

- \blacktriangleright Active thickness of 45 μ m
- p-bulk inverted (in new sensors)
- Boron High Diffusion gain implant
- No carbon co-implantation

Inter-pixel layout:

- One/Two trenches (1TR/2TR) to separate pixels
- > Four pixel borders:
 - (most aggressive) V1<V2<V3<V4 (least aggressive)

Sensors geometry:

- 1x2 array with several inter-pixel flavours
- 2x2 array, with pixel-border V3-1TR

Wafer	Trench depth	Trench process
1	D2	P1
7	D2	P2
9	D2	P3
11	D1	P1
16	D3	P2

Process parameters:

- Three trench depths: D1 < D2 < D3</p>
- Three trench processes: P1; P2; P3

Additional Information:

- \blacktriangleright Active thickness of 45 μ m
- p-bulk inverted (in new sensors)
- Boron High Diffusion gain implant
- No carbon co-implantation

Inter-pixel layout:

- One/Two trenches (1TR/2TR) to separate pixels
- Four pixel borders:
 - (most aggressive) V1<V2<V3<V4 (least aggressive)

Sensors geometry:

- 1x2 array with several inter-pixel flavours
- > 2x2 array, with pixel-border V3-1TR

Wafer	Trench depth	Trench process	Neutron Irradiation Fluence [10 ¹⁵ n _{eq} /cm ⁵]	X-Ray Irradiation Dose [Mrad]
1	D2	P1	0.4 - 0.8 - 1.5	1 - 5 - 10
7	D2	P2	0.4 - 0.8 - 1.5	
9	D2	P3	0.4 - 0.8 - 1.5	
11	D1	P1	0.4 - 0.8 - 1.5	1 - 5 - 10
16	D3	P2	0.4 - 0.8 - 1.5	

Irradiation campaign:

- Neutrons at JSI TRIGA reactor in Ljubljana
- X-Rays in Genova (E=40 kV; Dose rate=0.96 Mrad/h)

6

TREDI202

UPO,

Marco Ferrero,

Breakdown in pair-LGADs (new)

BD resilience to floating pixels

Clear correlation between BD Resilience to floating pads and trench process

Pre-Irradiation: almost unchanged breakdown in devices with trench process P1

BD resilience to floating pixels

Weak correlation between BD Resilience to floating pads and pixel-border type

Current-Voltage in irradiated LGADs

Trench depths D1-D2 and trench process P1 selected for studies post irradiation

- Trench isolation technology is radiation hard up to neutrons fluence of 1.5.10¹⁵ n_{eq}/cm² and X-rays dose of 10 Mrad
- BD Resilience to floating pad is maintained post neutrons and X-rays irradiation

Pixel isolation: Inter-pixel resistance

TREDI2022 UPO. Ferrero Marco I

Inter-pixel distance (pre-irradiation)

6 inter pixel layouts from W1(D2;P1) have been investigated

- TCT setup at room T
- Laser intensity: 3-10 MIPs
- Laser size: 10 µm

Perfect pixel isolation in most aggressive pixel border

12

Inter-pixel distance (pre-irradiation)

6 inter pixel layouts from W1(D2;P1) have been investigated

- Laser intensity: 3-10 MIPs
- Laser size: 10 μm

Inter-pixel distance 5-20 time narrower than LGADs with JTE and p-stop (Fill-Factor improvement)

13

Fill-Factor in pixelated TI-LGADs

Inter-pixel distance (post neutrons Irr.)

Pixel-border V3-1TR from W1(D2;P1) has been investigated

into Gain Implant

- Measurement performed with front-TCT setup at room T
- Laser intensity: 3-10 MIPs
- Laser size: 10 μm

> Perfect pixel isolation kept up to $1.5 \cdot 10^{15} n_{eq}/cm^2$

Weak correlation between IP-width and sensor bias

15

Signals shape

W1(D2;P1) V3-1TR (new) Bias = 200 V

- Measurement performed with front-TCT setup at room T
- Laser intensity: 3-10 MIPs
- Laser size: 10 μm

Shooting near the border Bipolar signal induced on the neighbouring pixel

17

Time resolution

- Sr90 β source
- Measurements at -25°C in a climatic chamber
- Single channel readout board optimized for timing
- Two amplification stages
- Trigger time resolution of 15-20 ps

- 30 ps time resolution achieved in a new sensor
- 40 ps time resolution achieved in a 4·10¹⁴ n_{eq}/cm² irradiated sensor (gain layer not optimized in term of radiation resistance)
- > No micro discharges have been observed before the breakdown voltage in both tested sensors

Mar

Summary

Trench-Isolated LGADs produced by FBK within a RD50 project:

- three trench depths (D1<D2<D3) and processes (P1;P2;P3) have been implemented
- several **pixel borders** with **1 and 2 trenches** have been designed
- > Excellent **pixel isolation pre and post-irradiation** (neutrons and X-rays) shown by:
 - IV characteristics
 - Inter-pixel resistance
 - TCT inter-pixel scan
- Good BD resilience to floating pixels in wafers with trench process P1
- > Inter-pixel distance measured between $2 \mu m$ and $10 \mu m$ (5-20 time lower than in standard LGADs)
- Time resolution below 40ps achieved in new and irradiated (4E14 n_{eq}/cm²) sensors
 - No micro-discharges noise degrades the sensors performances

> Trench isolation is a reliable and radiation hard segmentation technology for LGADs

Acknowledgements

Part of this work has been performed in the framework of RD50 CERN collaboration

Buck up

Breakdown in new pair-LGADs W7/9/11

7

BD resilience to floating pixels

Marco Ferrero, UPO, TREDI2022

BD resilience to floating pixels after X-rays irradiation

Inter-pixel resistance W11(D1;P1)

TCT - setup

Bosition

Gaussian laser spot

Particulars TCT setup:

- IR pulsed laser (1060 nm) \rightarrow 10-15 μ m spot
- xy-stage with sub-µm precision
- Stage control and DAQ via Labview software

Inter-pixel distance

Inter-pixel distance – post irradiation

Signals shape

W1(D2;P1) V3-1TR (new) Bias = 200V

- Measurement performed with front-TCT setup at room T
- Laser intensity: 3-10 MIPs
- Laser size: 10µm

Shooting on the middle Signal split between the two pixels

16

Noise and micro discharges

Time resolution – W1 (new) V3_1TR– 220V

Time resolution – W1 (4E14n_{eq})–375V

