

17th Trento Workshop on Advanced Radiation Sensors

Low Gain Avalanche Diodes

LGAD Process Characterization through Secondary Ion Mass Spectroscopy (SiMS)

Evangelos – Leonidas Gkougkousis

CERN EP-R&D

Geneve – March 2nd, 2022

Introduction, EP-R&D W.P. 1.1 – Hybrid Sensors

Planar Sensors (J. Haimberger, V. Gkougkousis)

- Radiation damage and trapping model validation though **TCAD**
- Timing and efficiency at $< 1e17 n_{eq}/cm^2$ using fast neutrons and ps protons (thicknesses 50, 100, 200, 300 µm)

LGADs (V. Gkougkousis)

- Radiation damage mechanisms and modeling on different dopant types (TIPP2021, ArxiV PrePRrint, PicoSecond Workshop 2021)
- Indium-Lithium gain layer radiation hardness investigations (Trento2021)
- **Process simulations and SiMS Carbon/Boron (LINK)**

Silicon Electron Multiplier (M. Halvorsen, LINK, ArxiV PrePRrint, IEEE)

- Structure optimization and electrostatic simulations.
- Timing and transient Simulations
- Process iterations (Metal Assisted Etching)

Small Pitch 3Ds for tacking and timing (V. Gkougkousis, LINK)

- β particles timing studies on irradiated and unirradiated devices \checkmark
- Test beam with SPS pions (Tracking + Timing) \checkmark
- Proton and neutron irradiations > 1e17 n_{eq}/cm^2 \checkmark
- \checkmark New small pitch production optimized for gain at the electrode region

Vagelis Gkougkousis

Jakob Haimberger Marius Halvorsen

Victor Coco

E. L. Gkougkousis

Talks @ Trento 2022

Introduction – Motivation

- ✓ 1x1 mm² CNM diodes, runs 10478 (W4 & W5) and 10924 (W6)
 - 50 µm on 250 µm 4" Sol wafers \checkmark
 - Boron, Boron + Carbon diffused and Gallium implanted gain layer \checkmark
- ✓ Irradiations:
 - 23 GeV PS protons \checkmark
 - ✓ fast (~10MeV) neutrons at JSI
 - ✓ 5 fluences: 1e14, 6e14, 1e15, 3e15, 6e15 n_{en}/cm²
- Tested at -10C, -20C and -30C

- Depletion voltage by Gaussian fit on IV derivative
- Repeated for -10, -20 & -30°C
- Active dopant extrapolated _

$$G(\%) = e^{-C_G \Phi}$$

1,0E-05

1,0E-06

(Y) 1,0E-07 1,0E-08

1,0E-09

1,0E-10

1,0E-11

Introduction - Motivation

Acceptor removal in all three cases is the same (same fraction of active dopant from V_{GL}), trapping is not (different gain for same fluence, starting from the same point)

Secondary Ion Mass Spectroscopy

Operating Principals

Mono-collection: elements measured sequentially by scanning the magnetic field

Secondary Ion Mass Spectroscopy

oDüsseld

Luxembourd

Belaiau

where

Grille de la Reine 🙆

Château de Versaille

RTEMETS

Église Notre Dame

SAINT-LOU

- ✓ Group d'Etude de la Matière Condense GEMaC in Versailles, France (Fermat building, 45 avenue des États-Unis)
- ✓ Part of the Université de Versailles Saint-Quentin-en-Yvelines, CNRS unit
- ✓ <u>Not a company</u>, they accept external users in terms of collaboration with a fixed cost per day of measurement (~ 1500CHF per day of machine)

Why

UVSQ

Groupe d'Étude la Matière Condensée

MONTRFUII

ALDI

mat. Universite

vcée privé

PORCHEFONTAINE

Available Equipment

Where and why

• Cameca 2f SiMS machine

Franc

- Duoplasmotron Source with Cs and Oxygen ions
- Profilometry and AFM

- Study accurately the gain layer to correctly reproduce impact ionization in simulations
- Understand radiation damage and acceptor removal vs gain layer geometry
- Test the Carbon concentration and its relation to radiation damage improvement
- Evaluate process flow in case of issues and establish failure point

2 / 3 / 2022

E. L. Gkougkousis

Madame Elisabeth

Symnase Richard Migu

Téréva Versailles

Crêperie du Marché

MACIF Assurances

Piscine Montbauron

Versailles

Secondary Ion Mass Spectroscopy

Sample preparation

- \checkmark Samples must have a clean planar surface with minim size of 2 x 2 mm and a uniformly implanted zone
- \checkmark A calibration standard must already exist for the element under study
- \checkmark A conductive surface is needed for better precision, metallization can be applied as an alternative

Analysis Concepts

Scaling Factor, Depth and Integrals

- SiMS is a comparative technique, starting from standard calibration sample and extrapolating to sample \checkmark under test $RSF = C_i^{cal} \frac{I_M^{cal.}}{I_i^{cal.}}$ where:
- Extrapolation done using RSF (Relative Scaling Factor) define as \checkmark
 - I_{M}^{cal} integral of matrix signal for total measurement time:
 - $I_M^{cal.} = (\mathbf{1}/T) \times \int_{-1}^{1} S_M \partial t$ I_i^{cal} integral of signal of element of choice for total measurement time:

Concentration of the same element on an identical matrix for the sample under test can be expressed as:

$$C_i^{sample} = RSF rac{S_i^{sample}}{S_M^{sample}}$$

- Primary ions species and beam current must be identical between calibration and measurement
- C_i^{cal} concentration integral for element under study (C, B, P) known from reference implantation
- The depth of any given point within a uniform layer L_i can expressed as the sum of the depth of all preceding layers increased by the product of the V measurement time within that layer $(t - T_{L-1})$ with the abrasion speed for the specific layer (v_{Li}) :

$$d_{L_i} = \sum_{j=1}^{j=i-1} D_{L_j} + (t_i - T_{L_{i-1}}) \times v_{L_i}$$

 $I_i^{cal.} = (\mathbf{1}/\mathbf{T}) \times \int_0^T \mathbf{S}_i \partial t$

Total "in-silicon" implanted dose defined as the integral of point concentration along the silicon dept, assuming linear behavior between consecutive measurements and fixed depth intervals, the integral can be approximated as:

$$C_{Tot.} = \sum_{d_{Si\,Interface}}^{2\%\,of\,c_{max}-1} \frac{1}{2} \times \Delta d_k \times (c_k + c_{k+1}) = \Delta d_k \times \left[\sum_{d_{Si\,Interface}}^{2\%\,of\,c_{max}} c_k - \frac{1}{2} \times (c_0 + c_n)\right]$$

- where Δd_k distance between two consecutive measurements
 - **c**_k dopant concentration at point k
 - $\mathbf{c}_{\mathbf{0}}$ dopant concentration at the silicon interface
 - **c**_n dopant concentration at 2% point of max in-silicon concentration

Boron Calibration Profiles

Boron Calibration Profiles

Sensitivity – Detection Limits **Boron Calibration Profile** 1.E+22 1.E+21 —100nA, 125µm Raster, 33µm Zone 1.E+20 —100nA, 125µm Raster, 87µm Zone efect 1.E+19 1.E+18 1.E+17 1.E+17 1.E+16 1.E+15 —100nA, 125μm Raster, 87μm Zone 1.E+15 1.E+14 1.E+13 1.E+12 200 400 600 1200 1400 1600 1800 0 800 1000 Depth (nm)

Beam Parameters	Abrasion Speed (nm/sec)	RSF (atoms/cm ³)
100nA, 125µm, 33µm	2.71 ± 0.11	(5.38 ± 0.13) ×10 ²²
100nA, 125µm, 87µm - Defect	2.78 ± 0.13	(4.92 ± 0.12) ×10 ²²
100nA, 125μm, 87μm	2.87 ± 0.04	$(4.80 \pm 0.12) \times 10^{22}$

- ✓ Best sensitivity for an 87 µm raster size (integration area) with 125 µm crater size at 100 nA primary beam current (Boron Conditions)
- ✓ Expected abrasion speeds in silicon in the order of 2.8 nm/sec
- ✓ Expected sensitivity for boron in the order of 1.4 × 10¹⁴ atoms/cm³ for a silicon matrix
- ✓ Relative scaling factor uncertainty of 2.5 %
- ✓ Not same conditions as for removing insulating layers before silicon

CNM W4S1046 Gain Layer I

1st Attempt on Passivated region

Before SiMS Measurements

After SiMS Measurements

- ✓ Several measurements for tuning, background control and obtaining statistics to combine multiple profiles
- ✓ Measurements on passivated and non-passivated regions
- Charge compensation to account for accumulated electron modifying extraction potential
- ✓ Consecutive measurements on same spot with different conditions, optimized for probed element/quantities

2 / 3 / 2022

•CNM W4S1046 Gain Layer I

Layer Transition evaluation

- ✓ Abrupt signal variation at layer interface
- ✓ Dirac-style derivative expected at layer transition
- ✓ Narrow Gaussian due to interlayer diffusion and machine resolution
- ✓ Layer transition time extrapolated from fit

Perform separate gaussian fits on the absolute value of the normalized signal derivatives for each of the observed elements

$$I(t) = Ae^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

Central Value
$$\mu = t^{I(t)}_{nax} \Big|_{t_{Low}}^{t_{High}} \Big|_{t_{Low}}^{t_{High}} \Big|_{t_{Low}}^{t_{High}} \Big|_{t_{Low}}^{t_{High}} \Big|_{t_{Low}}^{t_{High}} \Big|_{t_{1}+1} \Big|_{max/2} \Big|_{-t_i} \Big|_{t_{max/2}} \Big|_{2\sqrt{2 \ln 2}}^{t_{1}+1} \Big|_{2\sqrt{2 \ln 2}} \Big|_{2\sqrt{2 \ln 2}}^{t_{1}+1} \Big|_$$

Initial Fit Conditions

CNM W4S1046 Gain Layer I

•CNM W4S1046 Gain Layer II

2nd Try on non-passivated region

Signal vs Depth

Concentration in Silicon

CNM Gain Layer Combined

Doping Profile Synthesis & Properties

- ✓ A general "average profile" can be generated by combining the three measurements
- Profiles are composed of a set of discrete measurements of concentration at a specific depth
- ✓ Using one profile as a reference, the expected values of the other profiles for each point are estimated via linear extrapolation:

$$c_i = \left(\frac{c_{H,i} - c_{L,i}}{d_{H,i} - d_{L,i}}\right) \times (d_i - d_{Li}) + c_{Li}$$

✓ Main profile quantities recalculated on the combined profile

CNM Boron gain Layer				
Peak Concentration	$(2.59 \pm 0.54) \times 10^{1}$	⁶ atoms/cm ³		
Peak Position (in Si)	27 ± 14	nm		
∕Dose Integral (in Si)	$(3.74 \pm 0.24) \times 10^{1}$	² atoms/cm ²		
/ 50% Integrated Dose Depth (in Si)	933 ± 47	nm		
/	3812 ± 189	nm		

Defined up to 2 % of peak concentration, Set to twice the detection sensitivity

•FBK Gain Layer - UFSD 2, Low Carbon

Craters and profile stitching

- Combination of two series of measurements with different polarities to probe interfaces:
 - ► **55Cs** ion source (positive ions) to probe ${}_{14}N_{28}Si$, ${}_{31}P$, ${}_{12}C$ allowing to abrade pre-silicon layers
 - ¹⁶O ion source (negative ions) for boron profile characterization
- Presented profiles result of "Stitching" of the two series with appropriate time scaling
- \checkmark Consecutive measurements on the same crater spot
- Charge compensation to correct E field distortions due to accumulated charge on insulating layers Non-charge compensated measurement

Before SiMS measurements

ter SiMS measurements (each crater corresponds to a profile)

The colors are FBK UFSD2, Low Carbon - Pad, Passivated mixed Signal Time **1ST part of profile** Cesion primary ions 2nd part of profile 40 nA, 125 µm raster size, 33 Oxygen primary ions µm integration area 100 nA, 125 µm raster size, 75 µm integration area crater for this measurement

•FBK Gain Layer - UFSD 2, Low Carbon

- \checkmark Through depth profile measurement, layer depth can be extrapolated
- Abrasion speed is considered constant for all non-silicon (insulating) layers

Layer	Thickness (nm)	Abrasion Speed (nm/sec)	
1 st Layer	X ± 21.3	1.69 ± 0.12	
2 nd Layer	Y ± 50.7		
3 rd Layer	Z ± 62.7		
Insulating Layers	W ± 120		
Silicon		2.39 ± 0.06	

•FBK Gain Layer - UFSD 2, High Carbon

•FBK Gain Layer Combined - UFSD 2

Layers and profiles

- Combination of measurements on the High and Low carbonated samples
- No gain layer detected for the low carbonated sample (PIN)
- Consistent Boron gain layer on the high carbonated sample \checkmark
- \checkmark SiMS concentration consistent in integral, peak position and peak concentration to what we would expect from the producer
- Extremely precise measurements with very small \checkmark uncertainties

Carbon Calibration Profiles

Beam Parameter Optimization

----100μm size, 8μm anal., 150μm diaf., 0V off. 1.E+06 -80μm size, 8μm anal., 150μm diaf., 0V off. -60μm size, 8μm anal., 150μm diaf., 0V off. -----50μm size, 8μm anal., 150μm diaf., 0V off. I.E+04 1.E+02 -50μm size, 8μm anal., 50μm diaf., 0V off. — 50µm size, 8µm anal., 150µm diaf., 50V off. 1.E+00 0 500 1.000 1,500 2,000 2,500 3,000 Depth (nm)

- Carbon probing using Oxygen primary \checkmark atoms
- Due to the atmospheric presence of Carbon, \checkmark significant detection limits are much harder to att
- \checkmark Back need integ

$$I_{i}^{cal.} = (\mathbf{1}/T) \times \int_{T_{st.}}^{T_{bg.}} S_{i} \partial t \quad I_{M}^{cal.} = (\mathbf{1}/T) \times \int_{T_{st.}}^{T_{bg.}} S_{M} \partial t$$

Start and stop times are defines between the \checkmark points where no surface effects are present (T_{stat}) and the point where the observed signal reaches within 2σ of the background fluctuation

$$bg_{\cdot} = t \Big|_{S \ge \overline{S_{bg}} + 2 \times \sigma(S_{bg})} \qquad T_{st_{\cdot}} = t \Big|_{\frac{\partial I}{\partial t} \to min} \qquad T = T_{bg_{\cdot}} - T_{st_{\cdot}}$$

Total RSF can be evaluated with these approximations for each case following: \checkmark

100µm size, 8µm anal.,

150µm diaf., 0V off.

150µm diaf., 0V off.

$$RSF = \frac{implanted \ dose \ (C)}{v_{abr.} \times T} \times \frac{\int_{T_{st.}}^{T_{bg.}} S_M \partial t}{\int_{T_{st.}}^{T_{bg.}} S_i \partial t}$$

2/3/ 2022

E. L. Gkougkousis

Т

100µm size, 33µm anal., 80µm size, 8µm anal., 150µm diaf., 0V off. 60um size. 8um anal.. 150µm diaf., 0V off.

> 50µm size, 8µm anal., 150µm diaf., 0V off.

50µm size, 8µm anal., 50µm diaf., 0V off.

> , 8µm anal., af., 50V off.

size, 8µm 50µm diaf.,)V off.

n size, 8µm 150um diaf. ff., refocus

Carbon Calibration Profiles

Sensitivity Optimization

✓ The implant concentration is estimated in each case following:

$$C = RSF \times \frac{i_i^{cal.}}{i_M^{cal.}}$$

$$\delta C = \sqrt{\left(\frac{i_i^{cal.}}{i_M^{cal.}} \times \delta RSF\right)^2 + \left(\frac{RSF}{i_M^{cal.}} \times \frac{1}{\sqrt{i_i^{cal.}}}\right)^2 + \left(RSF \times \frac{i_i^{cal.}}{\left(i_M^{cal.}\right)^2} \times \frac{1}{\sqrt{i_M^{cal.}}}\right)^2}$$

- ✓ Without any additional optimization, a resolution of $(4.71 \pm 0.03) \times 10^{16}$ atoms/cm³ can be achieved
- ✓ The resolution increased for smaller raster sizes while maintain same beam intensity, resulting in higher observant signal intensity
- ✓ Downside of such an approach higher abrasion speed, lees points
- ✓ In essence this is the equivalent in measurement terms of statistical smoothing of profiles.
- ✓ Points recorded every 17 nm, limit of feature size one can probe for achieving such resolution

Gaussian fit on point projection to

estimate resolution form $\boldsymbol{\sigma}$

Beam Parameters	Abrasion Speed v (nm/sec)	Scaling Factor RSF (atoms/cm3)	Sensitivity S (atoms/cm3)
100µm size, 33µm reg., 150µm dia., 0V off.	4.35 ± 0.20	(2.77 ± 0.06) × 10 ²²	$4.85 \pm 0.11) \times 10^{16}$
100µm size, 8µm reg., 150µm dia., 0V off.	4.43 ± 0.21	(3.61 ± 0.08) × 10 ²²	$(1.80 \pm 0.01) \times 10^{17}$
80μm size, 8μm reg., 150μm dia., 0V off.	6.93 ± 0.34	(2.62 ± 0.06) × 10 ²²	$(1.48\ 0.005) \times 10^{17}$
60µm size, 8µm reg., 150µm dia., 0V off.	12.11 ± 0.65	$(1.82 \pm 0.04) \times 10^{22}$	(7.89 ± 0.02) × 10 ¹⁶
50μm size, 8μm reg., 150μm dia., 0V off.	14.64 ± 0.84	$(1.45 \pm 0.03) \times 10^{22}$	(7.44 ± 0.01) × 10 ¹⁶
50µm size, 8µm reg., 50µm dia., 0V off.	15.55 ± 0.91	$(1.05 \pm 0.02) \times 10^{22}$	$(1.78 \pm 0.002) \times 10^{17}$
50µm size, 8µm reg., 150µm dia., 50V off.	17.00 ± 1.04	(5.56 ± 0.14) × 10 ²²	$(4.71 \pm 0.03) \times 10^{16}$

•FBK and CNM Carbon

In-Silicon Carbon Profiles

- ✓ No Carbon detected to the level of > 4×10^{16} atoms/cm³ for the CNM samples and the FBK PIN low carbonated sample
- ✓ CNM Carbonated-Noncarbonated samples at the same background level concerning carbon signals
- \checkmark FBK Carbon peak in agreement with gain layer peak as expected though their process
- \checkmark Carbon tails at higher end due to measurements and crater edge effects

Concentration

CNM Carbon Layer Simulation

Where is the Carbon and why it deactivates boron?

- Complete TCAD Simulation of the total thermal budget and implantation step for boron and Carbon
- \checkmark Results for Boron in agreement with SiMS measurements in both depth and dose
- \checkmark Carbon Profile deep diffused with average concentrations at the limit of detection

CNM R10478 - TCAD Procdess simulation

> Cz High Resistivity Si substrate

- <100> orientation (dicing, radiation hardness)
- > Resistivity >4 k Ω hm*cm
- > P concentration of 10¹² atoms/cm³
- Active thickness 50 µm
- Native oxide: 1.9 nm
- Screen Oxide: 50 nm (deposited)
- > MC implantation:
 - ✓ 3000 tracks
 - ✓ Max track splits 6, splints per element 3
 - ✓ CristalTRIM algorithm
 - ✓ Clock seed randomization
 - ✓ Optimization error: ± 10¹⁴ atoms/cm³
 - ✓ Full cascade BCA damage (binary collision approx.,)
- Diffusion (Transport) Mode: Dopant dependent
 - ➢ Boron → Charged Pair
 - Phosphorus Charged Pair
- > Activation Models (See next slide)
- > Synopsys info
 - \checkmark Version 2019.12 with Advanced Calibration
 - ✓ MGOALS meshing algorithm

Carbon-Boron (De)activation model

The ComplexCluster and the BIC (boron interstitial) models

✓ Boron activation model:

- $\checkmark\,$ Boron activation is mainly interstitial driven
- ✓ BIC (Boron Interstitial Cluster) model simulates the process via clustering reactions: $B_i I_j + V/I \rightarrow B_i I_{j-1}/B_i I_{j+1}$

- ✓ User demined cluster sizes to consider: **B**, **BI**, **BI**₂, **B**₂**I**₁, **B**₃**I**₁, **B**₃**I**₂
- ✓ Reaction rates can be set by user for each reaction (eg 0.3×10^{-10})

✓ Carbon activation model:

- ✓ The CarbonCluster or Neutral Cluster Model sets initial cluster concentrations to 0 unless in amorphous regions
- \checkmark No charged clusters are considered, solutions to $A_iI_j + I \leftrightarrow A_iI_{j+1}$ $A_iI_j + AI \leftrightarrow A_{i+1}I_{j+1}$ $A_iI_j + V \leftrightarrow A_iI_{j-1}$
- ✓ For Carbon, the following dedicated clusters are computed: C_3I_2 , C_4I_2 , C_4I_3 , C_5I_3 , C_5I_4

✓ Boron/Carbon activation/deactivation models:

- ✓ The ComplexCluster Model considers cluster formation between dopants and Vacancies / Interstitials in Si
- ✓ Such process can be described generally as: $\mathbf{n}_1 \times \mathbf{Imp.A} + \mathbf{n}_2 \times \mathbf{Imp.B} + \mathbf{n}_3 \times \mathbf{V/I} + \mathbf{n}_4 \times \mathbf{e}^- \rightarrow \mathbf{A}_{n1} \mathbf{B}_{n2} (\mathbf{V/I}) \mathbf{n}_5 + \mathbf{n}_6 \mathbf{e}^-$
- ✓ In the carbon/boron case, the simplest reaction to consider is: $C + B + I \rightarrow BCI + e$
- \checkmark A final charge of 1.0 is expected in such a case
- \checkmark For the moment using the Initial concentration as provided after MC implantation by Crystal Trim

Conclusions

Outlook and Plans

- > Very good agreement of SiMS with Simulations for the CNM Process
- > Carbon present in the samples in concentrations $< 10^{16}$ and high depth
- Deep carbon diffusion does not impact gain layer de-activation but improves the radiation efficiency of high resistivity p-substrates with an at least 20% improvement in charge collection
- ➢ FBK high Carbonated process as expected with carbon and boron peaks aligned
- Carbon/Boron activation/deactivation implemented in the simulation with the ComlexCluster model being the best candidate to describe Boron deactivation
- Boron deactivation is not an LGAD effect, has been observed in the past and models were developed mainly for the Semiconductor industry focused on Carbon-Arsenic deactivation

3,0

Diffusion Model Comparison - Backup

- ✓ Different diffusion models tested
- ✓ Simulations compared with SiMS on n-in-p samples
- ✓ Constant model only good for very low doses < 1e13 cm⁻²
- ✓ Charged Fermi model successfully describes dopant behavior up to doses of 1e15 cm⁻²
- ✓ Pair model, taking into account binary interactions, covers the entire dose range up to 1e16 cm⁻²
- ✓ Charged versions of the models take into account ion charge (not relevant here)
- React models should be used when chemical reactions are expected

