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The	Goals

➣Measure	the	properties	of	silicon	sensors	at	fluences
above	1016 neq/cm2

➣ Design	planar	silicon	sensors	able	to	work	in	the	fluence	
range	1016 – 1017 neq/cm2

➣ Estimate	if	such	sensors	generate	enough	charge	to
be	used	in	a	detector	exposed	to	extreme	fluences

⇒ The	R&D	activity	has	started
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The	Challenge

Difficult	to	operate	silicon	sensors	above	1016 neq/cm2 due	to:
– defects	in	the	silicon	lattice	structure			→ increase	of	the	dark	current
– trapping	of	the	charge	carriers															→ decrease	of	the	charge	collection	efficiency
– change	in	the	bulk	effective	doping						→ impossible	to	fully	deplete	the	sensors
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A	new	Sensor	Design

Difficult	to	operate	silicon	sensors	above	1016 neq/cm2 due	to:
– defects	in	the	silicon	lattice	structure			→ increase	of	the	dark	current
– trapping	of	the	charge	carriers															→ decrease	of	the	charge	collection	efficiency
– change	in	the	bulk	effective	doping						→ impossible	to	fully	deplete	the	sensors

The	ingredients	to	overcome	the	present	limits	above	1016 neq/cm2 are:
1.		saturation of	the	radiation	damage	effects	above	5·1015 neq/cm2

2.		the	use	of	thin active	substrates	(20	– 40	µm)
3.		extension of	the	charge	carrier	multiplication	up	to	1017 neq/cm2
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A	new	Sensor	Design

Difficult	to	operate	silicon	sensors	above	1016 neq/cm2 due	to:
– defects	in	the	silicon	lattice	structure			→ increase	of	the	dark	current
– trapping	of	the	charge	carriers															→ decrease	of	the	charge	collection	efficiency
– change	in	the	bulk	effective	doping						→ impossible	to	fully	deplete	the	sensors

The	ingredients	to	overcome	the	present	limits	above	1016 neq/cm2 are:
1.		saturation of	the	radiation	damage	effects	above	5·1015 neq/cm2

2.		the	use	of	thin active	substrates	(20	– 40	µm)
3.		extension of	the	charge	carrier	multiplication	up	to	1017 neq/cm2

The	whole	research	program	is	performed	in	collaboration	with	FBK
In	the	following,	EXFLU0	and	EXFLU1	will	refer	to	two	FBK	productions	of	sensors
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In	2020,	INFN	awarded	for	funding	a	2	years	grant	for	young	researchers
to	develop,	produce,	irradiate	and	study	thin	silicon	sensors
→ The Silicon	Sensor	for	Extreme	Fluences (eXFlu) project

The	State-of-the-Art
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For	more	details	see
➠ l.infn.it/exflu
➠ indico.cern.ch/event/896954/contributions/4106324/
➠ indico.cern.ch/event/1074989/contributions/4601953/

EXFLU0	sensors	have	been	irradiated
at	JSI,	Ljubljana,	to	5	different	fluences
1015,	5·1015,	1016,	5·1016,	1017 neq/cm2

Released	at	the	end	of	2020
Thin	LGAD	wafers	have	been	produced	at	FBK	
→ EXFLU0	production
▻ 2	different	wafer	thicknesses:	25	&	35	µm
▻ epitaxial	substrates
▻ single	pads	and	2×2	arrays



25	µm	LGAD	Signal	at	Different	Fluences

Laser	intensity	~ few	MIPs
T	=	–10ºC

Measurements	of	charge	collection	efficiency	(CCE)	with	an	infra-red	laser	stimulus	
show	that	sensors	can	be	operated	up	to	the	highest	fluences

▻ The	LGAD	multiplication	mechanism
ceases	existing	at	~ 5·1015 neq/cm2

▻ From	1016 to	1017 neq/cm2	the	collected	
signal	is	roughly	constant

▻ At	high	bias	the	signal	increases	due
to	internal	gain,	but	does	not	reach
the	minimum	charge	required	by	the
electronics
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25	µm	LGAD	Signal	vs	Electric	Field

Laser	intensity	~ few	MIPs
T	=	–10ºC

Measurements	of	charge	collection	efficiency	(CCE)	with	an	infra-red	laser	stimulus	as	a	
function	of	the	electric	field	in	the	depleted	bulk	region

▻ Only	data	points	where	the	sensors	
are	fully	depleted	are	considered	here
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25	µm	LGAD	Signal	vs	Electric	Field

Laser	intensity	~ few	MIPs
T	=	–10ºC

Measurements	of	charge	collection	efficiency	(CCE)	with	an	infra-red	laser	stimulus	as	a	
function	of	the	electric	field	in	the	depleted	bulk	region

▻ Only	data	points	where	the	sensors	
are	fully	depleted	are	considered	here

▻ For	electric	fields	above	12	V/µm,	thin	
silicon	sensors	undergo	fatal	death	
once	exposed	to	particle	beams

→ Single-Event	Burnout
[indico.cern.ch/event/861104/

contributions/4513238/]
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→ Necessary	to	increase	the	radiation	tolerance	of	the	gain	mechanism	above	1015 neq/cm2
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Gain	Removal	Mechanism	in	LGADs
The	acceptor	removal	mechanism	deactivates	the
p+-doping	of	the	gain	layer	with	irradiation	according	to

p+(F)	=	p+(0)⋅e-cAF

where	cA is	the	acceptor	removal	coefficient
cA depends	on	the	initial	acceptor	density,	p+(0),	and	on	
the	defect	engineering	of	the	gain	layer	atoms
[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]
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R&D	to	further	mitigate	the	removal
of	the	acceptor	atoms	will	be	pursued		

The	acceptor	removal	mechanism	deactivates	the
p+-doping	of	the	gain	layer	with	irradiation	according	to

p+(F)	=	p+(0)⋅e-cAF

where	cA is	the	acceptor	removal	coefficient
cA depends	on	the	initial	acceptor	density,	p+(0),	and	on	
the	defect	engineering	of	the	gain	layer	atoms
[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]
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Higher	the	acceptor	density,
lower	the	removal

The	acceptor	removal	mechanism	deactivates	the
p+-doping	of	the	gain	layer	with	irradiation	according	to

p+(F)	=	p+(0)⋅e-cAF

where	cA is	the	acceptor	removal	coefficient
cA depends	on	the	initial	acceptor	density,	p+(0),	and	on	
the	defect	engineering	of	the	gain	layer	atoms
[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]
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The	acceptor	removal	mechanism	deactivates	the
p+-doping	of	the	gain	layer	with	irradiation	according	to

p+(F)	=	p+(0)⋅e-cAF

where	cA is	the	acceptor	removal	coefficient
cA depends	on	the	initial	acceptor	density,	p+(0),	and	on	
the	defect	engineering	of	the	gain	layer	atoms

Lowering	cA
extends	the	gain	
layer	survival	up	to	
the	highest	fluences	
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The	EXFLU1	Production	at	a	Glance
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A	new	production	of	thin	LGAD	is	about	to	start	at	the	FBK	foundry		⇒ EXFLU1

The	EXFLU1	production	at	FBK	will	explore	different	innovation	strategies	to	
extend	the	radiation	tolerance	of	silicon	sensors	up	to	the	extreme	fluences:
▻ compensation
▻ carbon	shield
▻ new	guard	ring	design
▻ thin	substrates	(15–45	µm)

Design	and	preparatory	studies	have	been	performed	in	collaboration	with	the	Perugia	group
For	more	details	see	the	presentation	by	P.	Asenov

→ The	EXFLU1	sensor	delivery	is	expected	by	Summer	2022



A	new	Paradigm	– Compensation

Impossible to reach the design target with the
present design of the gain layer
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A	new	Paradigm	– Compensation

Impossible to reach the design target with the
present design of the gain layer

Use the interplay between acceptor and
donor removal to keep a constant gain layer
active doping density
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A	new	Paradigm	– Compensation

Impossible to reach the design target with the
present design of the gain layer

Use the interplay between acceptor and
donor removal to keep a constant gain layer
active doping density

Many unknown:
▻ donor	removal	coefficient,	from	n+(F)	=	n+(0)⋅e-cDF

▻ interplay between donor and acceptor
removal (cD vs cA)

▻ effects of substrate impurities on the
removal coefficients
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→ A	3	years	project	has	been	accepted	for	funding	by	AIDAinnova as	Blue	Sky	R&D
to	investigate	and	develop	the	compensated	LGAD	design



Compensation	in	Real	Life
Process	simulations	of	Boron	(p+)	and	Phosphorus	(n+)	implantation	and	activation	reveal	the	different	
shape	of	the	two	profiles
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Process	simulations	of	Boron	(p+)	and	Phosphorus	(n+)	implantation	and	activation	reveal	the	different	
shape	of	the	two	profiles

Doping	Profiles	from	Process	Simulation
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Compensation	in	Real	Life
Process	simulations	of	Boron	(p+)	and	Phosphorus	(n+)	implantation	and	activation	reveal	the	different	
shape	of	the	two	profiles

→ The	simulation	of	the	electrostatic	behaviour	show	that	it	is	possible	to	reach	similar	multiplication	
for	different	initial	concentrations	of	p+ and	n+ dopants

I-V	from	Simulation

p+ × 2,	n+ × 1						
p+ × 3,	n+ × 2											
p+ × 4,	n+ × 3											
p+ × 5,	n+ × 4											

Doping	Profiles	from	Process	Simulation

× 4
× 5

Effective	Doping

n+ p+ n																						p
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Compensation	– Doping	Evolution	with	F

Three	scenarios	of	net	doping	evolution	with	fluence	are	possible,	according	to	the	
acceptor	and	donor	removal	interplay:
1.	cA ~ cD

p+ &	n+ difference	will	remain	constant	⇒ unchanged	gain	with	irradiation
→ This	is	the	best	possible	outcome
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p+ &	n+ difference	will	remain	constant	⇒ unchanged	gain	with	irradiation
→ This	is	the	best	possible	outcome

2.	cA >	cD
effective	doping	disappearance	is	slower	than	in	the	standard	design
→ Co-implantation	of	Carbon atoms	mitigates	the	removal	of	p+-doping	
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Compensation	– Doping	Evolution	with	F

Three	scenarios	of	net	doping	evolution	with	fluence	are	possible,	according	to	the	
acceptor	and	donor	removal	interplay:
1.	cA ~ cD

p+ &	n+ difference	will	remain	constant	⇒ unchanged	gain	with	irradiation
→ This	is	the	best	possible	outcome

2.	cA >	cD
effective	doping	disappearance	is	slower	than	in	the	standard	design
→ Co-implantation	of	Carbon atoms	mitigates	the	removal	of	p+-doping	

3.	cA <	cD
n+-atoms	removal	is	faster	⇒ increase	of	the	gain	with	irradiation
→ Co-implantation	of	Oxygen	atoms	might	mitigate	the	removal	of	n+-doping	
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A	Carbon	Shield	to	further	improve	cA
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Defect	engineering	strategy	to	enhance	the	gain	layer	radiation	tolerance

→ A	Carbon	shield will	be	infused	below	the	gain	layer	volume	to	protect	the	gain	layer	
from	the	diffusion	of	defect	complexes	from	the	bulk	region	and	the	support	wafer
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A	Carbon	Shield	to	further	improve	cA
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Defect	engineering	strategy	to	enhance	the	gain	layer	radiation	tolerance

→ A	Carbon	shield will	be	infused	below	the	gain	layer	volume	to	protect	the	gain	layer	
from	the	diffusion	of	defect	complexes	from	the	bulk	region	and	the	support	wafer

A	spray	of	Carbon	will	be	introduced	below	the	gain	layer	region	to	protect	the	gain	layer	
atoms	from	defects	moving	towards	the	n++ electrode	during	process	thermal	loads	or	
exposure	to	particle	radiation
→ Oxygen	dimers	can	be	captured	by	the	Carbon	atoms,	preventing	the	removal	of	acceptors

n++

p+

p

p++

No	Carbon
n++

p+

p

p++

Carbonated	GL Carbon	Shield
n++

p+

p

p++

O2i

Reduce	cA Reduce	cA ?



Optimised	Guard	Ring	Designs
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16	different	guard	ring	have	been	designed,	optimised	for	thin	substrates	and	extreme	fluences

3	different	guard	ring	strategies:

▻ 0	GR	floating,	varying	the	edge	size
– different	size	of	the	‘empty’	region
– different	size	of	the	edge	region:	500,	300	&	200	µm

▻ 1	GR	floating,	varying	the	GR	position

▻ 3	GR	floating	with	standard	design,	p-stop	only	&	n-deep	only



The	EXFLU1	Layout
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▻ Single	Pads	with	16	different	guard-ring	designs

▻ Big	Single	Pads

▻ 2×2	Arrays	&	LGAD-PiNs

Reticle Layout



The	EXFLU1	Layout
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Reticle Layout 6”	Wafer	Layout



Towards	the	Extreme	Fluences

→ The	take-home	message	from	the	EXFLU0	production:
▻ signals	from	thin	sensors	are	visible	up	to	the	highest	fluence,	namely	1017 neq/cm2	

▻multiplication	mechanism	need	to	be	preserved	above	1016 neq/cm2 to	prevent	sensors	from
single	event	burnout
▻ it	is	difficult	to	investigate	the	static	behaviour of	sensors	irradiated	to	5⋅1016 neq/cm2 and	above

→ Compensation	of	p+ and	n+ dopants	in	the	gain	layer	volume	can	represent	the	key
strategy	to	preserve	the	multiplication	mechanism	up	to	the	highest	fluences

→ The	EXFLU1	production	aims	at	extending	the	radiation	resistance	of	thin	silicon	sensors
and	represent	the	proof	of	concept	of	the	compensated	gain	layer	design

⟹ Compensated	gain	implants	will	also	allow	extending	the	limit	of	sensors	able	to
perform	4D	tracking	to	fluences	much	above	the	present	limit	of	1–2⋅1015 neq/cm2
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Backup



Saturation
At	fluences above	5·1015 cm-2 → Saturation	of	radiation	effects	observed

Silicon	detectors	irradiated	at	fluences	1016 – 1017 neq/cm2 do	not	behave	as	expected → They	behave	better

Leakage	current	saturation
I	=	aVF

a from	linear	to	logarithmic

Trapping	probability	saturation
1/teff =	bF

b from	linear	to	logarithmic

Acceptor	creation	saturation
NA,eff =	gcF

gc from	linear	to	logarithmic

y = 4,23E+13ln(x) - 1,43E+15
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Thin	Substrates
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g = 0.02/cm

g ~ ln(fluence)

Full depletion voltage at F = 1017 neq/cm2

At	high	fluences,	only	thin	substrates	
can	be	fully	depleted

VFD =	e|Neff|d2/2e

Saturation Reduce	thickness

What	does	it	happen	to	a	25	µm	sensor after	a	fluence	of	5·1016 neq/cm2?
▻ It	can	still	be	depleted
▻ Trapping	is	limited	(small	drift	length)
▻ Dark	current	is	low	(small	volume)

However:	charge	deposited	by	a	MIP	~ 0.25	fC
→ This	charge	is	lower	than	the	minimum	charge	requested	by	the	electronics	

(~ 1	fC for	tracking,	≳ 5	fC for	timing)
→ Need	a gain	of	at	least	~ 5	in	order	to	efficiently	record	a	hit

Optimal	candidate:	
LGAD	sensors
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Donor	Removal	Characterisation
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A	p-in-n	LGAD	production	batch	is	needed	to	study	the	donor	removal	coefficient,	cD
Donor	removal	has	been	studied	for	doping	densities	of	1012 – 1014 atoms/cm3

We	need	to	study	donor	removal	in	a	range	1016 – 1018 atoms/cm3

NB:	Oxygen	has	for	donor	removal	a	very	similar	effect	of	Carbon	to	acceptor	removal

→ The	main	goal	of	the	p-in-n	LGAD	production	is	to	study	the
cD evolution	and	its	interplay	with	Oxygen	co-implantation

p-in-n	LGAD

p++

p+

n

n++



Measurements have been performed at T = +25ºC
→ The goal is to extract the voltage of full depletion (VFD)

Doping	Evolution	on	Thin	Bulk	– 25	µm
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25	µm	thick	sensors	have	a	highly	doped	active	substrate
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25	µm	thick	sensors	have	a	highly	doped	active	substrate
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Measurements have been performed at T = +25ºC
→ The average of VFD from CV and TCT is used to extract the effective doping

Doping	Evolution	on	Thin	Bulk	– 25	µm
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25	µm	thick	sensors	have	a	highly	doped	active	substrate
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Measurements have been performed at T = +25ºC
→ The average of VFD from CV and TCT is used to extract the effective doping
→ Difficult to assess the voltage of full depletion above 1016 neq/cm2⇒ Possible to use signal shape information?

Doping	Evolution	on	Thin	Bulk	– 25	µm
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25	µm	thick	sensors	have	a	highly	doped	active	substrate From		NA,eff(F)	=	NA(0)⋅e-cF +	gcF and	considering	
the	saturation	of	the	acceptor	creation,	the	25	µm	

bulk	doping	is	expected	to	evolve	as	follows
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Full	Depletion	Voltage	from	TCT	@	T	=	+25ºC

Laser	intensity	equivalent	to	many MIPs

VFD =	35.7	V

TCT	on	PiN @	different	T	to	extract	the	voltage	of	full	depletion

F =	5E15	neq/cm2 F =	1E16	neq/cm2

VFD =	50.1	V
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Rise	Time	of	LGAD	@	different	Fluences	
Laser	intensity	~ few	MIPs

Signals	exhibit	a	fast	rise	at	all	fluences	

T	=	–10ºC

Rise	time	defined	as	the	
10–90%	of	the	leading	edge


