

TREDI 2022

The 17th "Trento" Workshop on Advanced Silicon Radiation Detectors

2 – 4 March 2022 University of Freiburg (Virtual)

Present and future development of thin silicon sensors for extreme fluences

V. Sola, R. Arcidiacono, P. Asenov, G. Borghi, M. Boscardin, N. Cartiglia, M. Centis Vignali, T. Croci, M. Ferrero, G. Gioachin, S. Giordanengo, M. Mandurrino, L. Menzio, V. Monaco, A. Morozzi, F. Moscatelli, D. Passeri, G. Paternoster, F. Siviero, M. Tornago

The Goals

Measure the properties of silicon sensors at fluences above 10¹⁶ n_{eq}/cm²

Design planar silicon sensors able to work in the fluence range 10¹⁶ – 10¹⁷ n_{eq}/cm²

Estimate if such sensors generate enough charge to be used in a detector exposed to extreme fluences

 \Rightarrow The R&D activity has started

The Challenge

Difficult to operate silicon sensors above $10^{16} n_{eq}/cm^2$ due to:

- defects in the silicon lattice structure \rightarrow increase of the dark current
- trapping of the charge carriers
- change in the bulk effective doping
- - \rightarrow decrease of the charge collection efficiency
 - \rightarrow impossible to fully deplete the sensors

A new Sensor Design

Difficult to operate silicon sensors above $10^{16} n_{eq}/cm^2$ due to:

- defects in the silicon lattice structure \rightarrow increase of the dark current
- change in the bulk effective doping
- trapping of the charge carriers \rightarrow decrease of the charge collection efficiency
 - \rightarrow impossible to fully deplete the sensors

The ingredients to overcome the present limits above $10^{16} n_{eq}/cm^2$ are:

- 1. saturation of the radiation damage effects above $5 \cdot 10^{15} n_{eq}/cm^2$
- 2. the use of **thin** active substrates $(20 40 \mu m)$
- 3. **extension** of the charge carrier multiplication up to $10^{17} n_{eq}/cm^2$

A new Sensor Design

Difficult to operate silicon sensors above $10^{16} n_{eq}/cm^2$ due to:

- defects in the silicon lattice structure \rightarrow increase of the dark current
- trapping of the charge carriers
- change in the bulk effective doping
- \rightarrow decrease of the charge collection efficiency
- \rightarrow impossible to fully deplete the sensors

The ingredients to overcome the present limits above $10^{16} n_{eq}/cm^2$ are:

- 1. saturation of the radiation damage effects above $5 \cdot 10^{15} n_{eq}/cm^2$
- 2. the use of thin active substrates (20 40 μ m)
- 3. extension of the charge carrier multiplication up to $10^{17} n_{eq}/cm^2$

The whole research program is performed in collaboration with FBK In the following, EXFLU0 and EXFLU1 will refer to two FBK productions of sensors

The State-of-the-Art

In 2020, INFN awarded for funding a 2 years grant for young researchers to **develop**, **produce**, **irradiate and study thin silicon sensors** → **The** *Silicon Sensor for Extreme Fluences (eXFlu)* **project**

Thin LGAD wafers have been produced at FBK

- \rightarrow EXFLU0 production
- \triangleright 2 different wafer thicknesses: 25 & 35 μm
- ▷ epitaxial substrates
- ▷ **single pads** and 2×2 arrays

For more details see

- ➡ <u>l.infn.it/exflu</u>
- indico.cern.ch/event/896954/contributions/4106324/
- indico.cern.ch/event/1074989/contributions/4601953/

Released at the end of 2020

EXFLU0 sensors have been irradiated at JSI, Ljubljana, to 5 different fluences 10¹⁵, 5·10¹⁵, 10¹⁶, 5·10¹⁶, 10¹⁷ n_{eq}/cm²

25 µm LGAD Signal at Different Fluences

Measurements of charge collection efficiency (CCE) with an infra-red laser stimulus show that sensors can be operated up to the highest fluences

▷ The LGAD multiplication mechanism ceases existing at ~ 5.10¹⁵ n_{eq}/cm²

- From 10¹⁶ to 10¹⁷ n_{eq}/cm² the collected signal is roughly constant
- At high bias the signal increases due to internal gain, but does not reach the minimum charge required by the electronics

25 µm LGAD Signal vs Electric Field

Measurements of charge collection efficiency (CCE) with an infra-red laser stimulus as a function of the electric field in the depleted bulk region

Only data points where the sensors are fully depleted are considered here

25 µm LGAD Signal vs Electric Field

Measurements of charge collection efficiency (CCE) with an infra-red laser stimulus as a function of the electric field in the depleted bulk region

- Only data points where the sensors are fully depleted are considered here
- ▷ For electric fields above 12 V/µm, thin silicon sensors undergo fatal death once exposed to particle beams
 → Single-Event Burnout

indico.cern.ch/event/861104/
 contributions/4513238/

 \rightarrow Necessary to increase the radiation tolerance of the gain mechanism above 10¹⁵ n_{eq}/cm²

Gain Removal Mechanism in LGADs

The acceptor removal mechanism deactivates the p⁺-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient

 c_A depends on the initial acceptor density, $p^+(0)$, and on the defect engineering of the gain layer atoms

[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]

Gain Removal Mechanism in LGADs

The acceptor removal mechanism deactivates the p⁺-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient

 c_A depends on the initial acceptor density, $p^+(0)$, and on the defect engineering of the gain layer atoms

[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]

R&D to further mitigate the removal of the acceptor atoms will be pursued

Towards a Radiation Resistant Design

The acceptor removal mechanism deactivates the p⁺-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient

 c_A depends on the initial acceptor density, $p^+(0)$, and on the defect engineering of the gain layer atoms

[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]

Towards a Radiation Resistant Design

The acceptor removal mechanism deactivates the p⁺-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient c_A depends on the initial acceptor density, p⁺(0), and on the defect engineering of the gain layer atoms

The EXFLU1 Production at a Glance

A new production of thin LGAD is about to start at the FBK foundry \Rightarrow EXFLU1

The EXFLU1 production at FBK will explore different innovation strategies to extend the radiation tolerance of silicon sensors up to the extreme fluences:

- ▷ compensation
- ▷ carbon shield
- ▷ new guard ring design
- b thin substrates (15−45 µm)

Design and preparatory studies have been performed in collaboration with the Perugia group For more details see the <u>presentation by P. Asenov</u>

\rightarrow The EXFLU1 sensor delivery is expected by Summer 2022

Impossible to reach the design target with the present design of the gain layer

Impossible to reach the design target with the present design of the gain layer

Use the interplay between acceptor and donor removal to keep a constant gain layer active doping density

Impossible to reach the design target with the present design of the gain layer

Use the interplay between acceptor and donor removal to keep a constant gain layer active doping density

Many unknown:

- ▷ donor removal coefficient, from $n^+(\Phi) = n^+(0) \cdot e^{-c_D \Phi}$
- interplay between donor and acceptor removal (c_D vs c_A)
- effects of substrate impurities on the removal coefficients

Impossible to reach the design target with the present design of the gain layer

Use the interplay between acceptor and donor removal to keep a constant gain layer active doping density

Many unknown:

- \triangleright donor removal coefficient, from $n^+(\Phi) = n^+(0) \cdot e^{-c_D \Phi}$
- interplay between donor and acceptor removal (c_{D} vs c_{A})

```
⊳ effe(⁺-
         <u>of cubatrata impourities on th</u>
```

rem \rightarrow A 3 years project has been accepted for funding by AIDAinnova as Blue Sky R&D to investigate and develop the compensated LGAD design

Compensation in Real Life

Process simulations of Boron (p⁺) and Phosphorus (n⁺) implantation and activation reveal the different shape of the two profiles

Υ (μm)

Compensation in Real Life

Process simulations of Boron (p⁺) and Phosphorus (n⁺) implantation and activation reveal the different shape of the two profiles

Doping Profiles from Process Simulation

Υ (μm)

Compensation in Real Life

Process simulations of Boron (p⁺) and Phosphorus (n⁺) implantation and activation reveal the different shape of the two profiles

→ The simulation of the electrostatic behaviour show that it is possible to reach similar multiplication for different initial concentrations of p⁺ and n⁺ dopants

Compensation – Doping Evolution with Φ

Three scenarios of net doping evolution with fluence are possible, according to the acceptor and donor removal interplay:

1. $\mathbf{c}_{\mathsf{A}} \sim \mathbf{c}_{\mathsf{D}}$

- p⁺ & n⁺ difference will remain constant \Rightarrow unchanged gain with irradiation
- \rightarrow This is the best possible outcome

Compensation – Doping Evolution with Φ

Three scenarios of net doping evolution with fluence are possible, according to the acceptor and donor removal interplay:

1. $\mathbf{c}_{\mathsf{A}} \sim \mathbf{c}_{\mathsf{D}}$

- p⁺ & n⁺ difference will remain constant \Rightarrow unchanged gain with irradiation
- \rightarrow This is the best possible outcome
- 2. **c**_A > **c**_D

effective doping disappearance is slower than in the standard design

 \rightarrow **Co-implantation of Carbon** atoms mitigates the removal of p⁺-doping

Compensation – Doping Evolution with Φ

Three scenarios of net doping evolution with fluence are possible, according to the acceptor and donor removal interplay:

1. $\mathbf{c}_{\mathsf{A}} \sim \mathbf{c}_{\mathsf{D}}$

p⁺ & n⁺ difference will remain constant \Rightarrow unchanged gain with irradiation

 \rightarrow This is the best possible outcome

2. **c**_A > **c**_D

effective doping disappearance is slower than in the standard design

 \rightarrow Co-implantation of Carbon atoms mitigates the removal of p⁺-doping

3. **c**_A < **c**_D

n⁺-atoms removal is faster \Rightarrow increase of the gain with irradiation

 \rightarrow **Co-implantation of Oxygen** atoms might mitigate the removal of n⁺-doping

A Carbon Shield to further improve c_A

Defect engineering strategy to enhance the gain layer radiation tolerance

→ A **Carbon shield** will be infused below the gain layer volume to protect the gain layer from the diffusion of defect complexes from the bulk region and the support wafer

A Carbon Shield to further improve c_A

Defect engineering strategy to enhance the gain layer radiation tolerance

→ A **Carbon shield** will be infused below the gain layer volume to protect the gain layer from the diffusion of defect complexes from the bulk region and the support wafer

A spray of Carbon will be introduced below the gain layer region to protect the gain layer atoms from defects moving towards the n⁺⁺ electrode during process thermal loads or exposure to particle radiation

 \rightarrow Oxygen dimers can be captured by the Carbon atoms, preventing the removal of acceptors

Optimised Guard Ring Designs

16 different guard ring have been designed, optimised for thin substrates and extreme fluences

3 different guard ring strategies:

- ▷ 0 GR floating, varying the edge size
 - different size of the 'empty' region
 - different size of the edge region: 500, 300 & 200 μm

▷ 1 GR floating, varying the GR position

S GR floating with standard design, p-stop only & n-deep only

The EXFLU1 Layout

Reticle Layout

Single Pads with 16 different guard-ring designs

▷ Big Single Pads

▷ 2×2 Arrays & LGAD-PiNs

The EXFLU1 Layout

Reticle Layout

6" Wafer Layout

Towards the Extreme Fluences

- \rightarrow The take-home message from the EXFLU0 production:
 - ▷ signals from thin sensors are visible up to the highest fluence, namely 10¹⁷ n_{eq}/cm²
 - multiplication mechanism need to be preserved above 10¹⁶ n_{eq}/cm² to prevent sensors from single event burnout
 - ▷ it is difficult to investigate the static behaviour of sensors irradiated to 5 · 10¹⁶ n_{eq}/cm² and above
- \rightarrow Compensation of p⁺ and n⁺ dopants in the gain layer volume can represent the key strategy to preserve the multiplication mechanism up to the highest fluences
- → The EXFLU1 production aims at extending the radiation resistance of thin silicon sensors and represent the proof of concept of the compensated gain layer design
 - \Rightarrow Compensated gain implants will also allow extending the limit of sensors able to perform 4D tracking to fluences much above the present limit of 1–2 \cdot 10¹⁵ n_{eq}/cm²

Towards the Extreme Fluences

- \rightarrow The take-home message from the EXFLU0 production:
 - ▷ signals from thin sensors are visible up to the highest fluence, namely 10¹⁷ n_{eq}/cm²
 - multiplication mechanism need to be preserved above 10¹⁶ n_{eq}/cm² to prevent sensors from single event burnout
 - ▷ it is difficult to investigate the static behaviour of sensors irradiated to 5 · 10¹⁶ n_{eq}/cm² and above
- \rightarrow Compensation of p⁺ and n⁺ dopants in the gain layer volume can represent the key strategy to preserve the multiplication mechanism up to the highest fluences
- → The EXFLU1 production aims at extending the radiation resistance of thin silic and represent the proof of concept of the compensated gain layer design
 - ⇒ Compensated gain implants will also allow extending the limit of sen perform 4D tracking to fluences much above the present limit of 1–2⁻

Acknowledgements

We kindly acknowledge the following funding agencies and collaborations:

- ▷ INFN CSN5
- Ministero della Ricerca, Italia, FARE, R165xr8frt_fare
- Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- MIUR, Dipartimenti di Eccellenza (ex L. 232/2016, art. 1, cc. 314, 337)
- European Union's Horizon 2020 Research and Innovation programme, Grant Agreement No. 101004761
- AIDAinnova, WP13
- ⊳ RD50, CERN

Saturation

Silicon detectors irradiated at fluences $10^{16} - 10^{17} n_{eq}/cm^2$ do not behave as expected \rightarrow They behave better

Thin Substrates

- ▷ It can still be depleted
- ▷ Trapping is limited (small drift length)
- ▷ Dark current is low (small volume)

However: charge deposited by a MIP ~ 0.25 fC

- \rightarrow This charge is lower than the minimum charge requested by the electronics
 - (~ 1 fC for tracking, ≥ 5 fC for timing)
- → Need a gain of at least ~ 5 in order to efficiently record a hit

Optimal candidate: LGAD sensors

Donor Removal Characterisation

A p-in-n LGAD production batch is needed to study the donor removal coefficient, c_D

Donor removal has been studied for doping densities of $10^{12} - 10^{14}$ atoms/cm³

We need to study donor removal in a range $10^{16} - 10^{18}$ atoms/cm³

NB: Oxygen has for donor removal a very similar effect of Carbon to acceptor removal

p-in-n LGAD

 \rightarrow The main goal of the p-in-n LGAD production is to study the $c_{\rm D}$ evolution and its interplay with Oxygen co-implantation

Doping Evolution on Thin Bulk – 25 μm

 $25 \ \mu m$ thick sensors have a highly doped active substrate

Measurements have been performed at $T = +25^{\circ}C$

 \rightarrow The goal is to extract the voltage of full depletion (V_{FD})

Doping Evolution on Thin Bulk – 25 μ m

25 µm thick sensors have a highly doped active substrate

 $25 \,\mu\text{m} \text{EXFLU0} - 1/\text{C}^2\text{V} \text{PiN}$

Measurements have been performed at $T = +25^{\circ}C$

 \rightarrow The goal is to extract the voltage of full depletion (V_{FD})

Φ [n _{eq} /cm²]	V _{FD} from CV [V]
0	53
1·10 ¹⁵	6
5·10 ¹⁵	35
1.10 ¹⁶	82

Doping Evolution on Thin Bulk – 25 μm

 $25 \ \mu m$ thick sensors have a highly doped active substrate

Measurements have been performed at $T = +25^{\circ}C$

 \rightarrow The average of V $_{\rm FD}$ from CV and TCT is used to extract the effective doping

Doping Evolution on Thin Bulk – 25 μ m

25 µm thick sensors have a highly doped active substrate

- \rightarrow The average of V_{FD} from CV and TCT is used to extract the effective doping
- \rightarrow Difficult to assess the voltage of full depletion above 10¹⁶ n_{eq}/cm² \Rightarrow Possible to use signal shape information?

Full Depletion Voltage from TCT @ T = +25°C

TCT on PiN @ different T to extract the voltage of full depletion

Laser intensity equivalent to many MIPs

Rise Time of LGAD @ different Fluences

