New test beam results of HPK planar pixel sensors for the CMS Phase 2 upgrade

Massimiliano Antonello

On behalf of the CMS Tracker Group

Federal Ministry of Education and Research

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

17th "Trento" Workshop on **Advanced Silicon Radiation Detectors**

University of Freiburg (Virtual) 03 - 03 - 2022

The CMS Inner Tracker for Phase 2 upgrade

For the HL-LHC phase, the CMS Inner Tracker (IT) system will be entirely upgraded^[1]

Detector layout:

- Coverage extended up to $|\eta| = 4$
- Tracker Barrel PiXel (TBPX): 4 layers (no crack at z=0)
- Tracker Forward PiXel (TFPX): 8 small disks for each side
- Tracker Endcap PiXel (TEPX): 4 large disks for each side

Two types of hybrid pixel modules: $1x^2$ and $2x^2$ readout chips (ROCs) per module (1156 and 2736 modules)

[1] The Phase-2 Upgrade of the CMS Tracker (**TDR**)

DER FORSCHUNG | DER LEHRE | DER BILDUN

Fluence scenarios and sensor requirements

The new **HL-LHC** upgrade environment:

- Luminosity @ 7.5x10³⁴ cm⁻²s⁻¹, with an integrated luminosity of 4000 fb⁻¹ (10x times more than Phase 1)
- Pile-up to $\langle \mu \rangle = 200$ (10x times more than Phase 1)

Based on the "ultimate luminosity scenario" for HL-LHC & the latest FLUKA simulation:

	RUN 4		RUN 4+5		RUN 4+5+6	
	1E16 n _{eq} /cm ²	Grad	1E16 n _{eq} /cm ²	Grad	1E16 n _{eq} /cm ²	Grad
TBPX L1	0.73	0.40	1.88	1.03	3.51	1.91
TFPX R1	0.48	0.31	1.25	0.81	2.34	1.50
TBPX L2	0.20	0.11	0.51	0.29	0.94	0.55

Baseline scenario: replacement in LS5 and define the LS5 fluence and dose as benchmark

Some sensor design constraints:

- High radiation tolerance: fluence of $1.88 \ge 10^{16} n_{eq}/cm^2$ dose of 1.03 Grad
- Keep the occupancy below 10-4: from 100 x 150 μ m² to 25 x 100 μ m²
- High single hit reconstruction efficiency: $\varepsilon_{hit} > 98\%$ for L1 and $\varepsilon_{hit} > 99\%$ for L2-L4 (end of lifetime)
- High spatial resolution: $\sigma_{hit} < \frac{\rho_{hit}}{\sqrt{12}}$
- No thermal runaway

Not feasible regardless of the sensor technology choice

Baseline design proposed:

- ✓ **Hybrid** pixel detectors
- ✓ n-in-p planar sensors for TBPX (L2-L4), TFPX and TEPX (all disks):
 - **Single side** processing (front-side only)
 - Active thickness: 150 µm (from 285 µm)
 - $25 \times 100 \,\mu\text{m}^2$ cell size (50 x 50 μm^2 option discarded)
 - Inter-chip regions with **long** pixels
 - No punch through bias (higher ε)^[1]

Bitten implant design RD53A 2019

 $\mathbf{\Lambda}$

Hamamatsu Photonics (HPK) design

"Standard" design RD53A 2017

For the **"ultimate luminosity scenario"**: min. T_{CO2} reachable underneath the module: -33°C

From power dissipation simulations for L1, to avoid sensors thermal runaway:

- Planar sensors: the required T_{CO2} is much lower than -33°C
- **3D** sensors: more than 4°C margin (confirmed power dissipation below 20 mW/cm² also after 2E16 n_{eq}/cm²)

Open points: TBPX L1

<u>Two contributions for the 3D option:</u>

- G. Bardelli talk: today @ 17:05 "Test Beam results of FBK 3D pixel sensors interconnected to RD53A readout chip after high irradiation"
- S. J. Dittmer talk: today @ 17:45 "Study of irradiated CNM 3D sensors"

Bricked geometry option:

- Aim: improve the resolution along the 100 µm direction (without affecting the 25 µm resolution)
- Design effective only if **charge is shared** on more than one pixel (in 25 µm direction)
- Option for central **η** region of TBPX L2-L3-L4
 - Barrel: no advantage for $\eta \ge 0.62$ (cotg(β) = 100 µm/150 µm)
 - Endcaps: little charge sharing, no advantage for $\eta \le 1.8$

Open points: bricked geometry

Bitten implant design RD53A

Bricked design RD53A

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

All sensors bonded to **RD53A Chips**^[1]:

- 76 800 pixels (26 112 pixels for the LIN section)
- 50 x 50 µm² pixel pitch
- 65 nm CMOS technology (TSMC), radiation hard design
- Serial powering via on-chip shunt-LDO regulators
- Three different FE available: Synchronous, Linear and Differential
- Adjustable online threshold: below 1000 e⁻ (LIN FE)
- Charge digitization via 4-bit Time-over-Threshold (ToT unit)

[1] RD53 Collaboration (Link)

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUN

DESY test beam setup

All data taken at TB21 area:

- Electron/positron beam
- Energies: from 1 to 6 GeV (data @ 5.2 GeV)
- **Trigger:** two upstream scintillators (2x1 cm² overlap)
- Tracking: EUDET DATURA Telescope 6 MIMOSA-26 planes ($t_{int} = 115 \mu s$)
- Timing layer: CMS Phase 1 module
- Device Under Test (DUT): cooling box ($T_{chiller} \sim -35^{\circ}C$)

Characterization procedure:

- Lab measurements: I-V
- Test beam measurements:
 - Hit **efficiency** wrt telescope tracks
 - Single hit resolution @ various angles

Requirements:

- Breakdown: > 300 V before irradiation

> 800 V after irradiation to 0.5 x 10^{16} n_{eq}/cm²

From simulation: at least 300 V required for optimal resolution - High voltage stability for $\Phi_{eq} = 0.1 \times 10^{15} n_{eq}/cm^2$

✓ Yield for RD53A singles (50x50 µm and 25x100 µm): 100% (75/75) ✓ No sign of breakdown up to 800 V during the test beams (even with fluences up to $2 \ge 10^{16} n_{eq}/cm^2$)

💶 Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Results: hit efficiency

Requirements:

- Hit efficiency^{*}: $\epsilon_{hit} > 99\%$ before irradiation (vertical incidence @ V_{bias} = V_{dep} + 50 V and 20°C)

 $\checkmark \epsilon_{hit} > 99\%$ already for V_{bias} > 5 V ✓ No sign of breakdown up to 400 V during the test beams

 $\epsilon_{\text{hit}} > 99\%$ after irradiation to 0.5 x 10¹⁶ n_{eq}/cm^2 (vertical incidence @ V_{bias} ≤ 800 V and -20° C) $\epsilon_{\text{hit}} > 98\%$ after irradiation to 1.0 x 10¹⁶ n_{eq}/cm^2 (vertical incidence @ V_{bias} ≤ 800 V and -20° C)

> Online thresholds° ~ 990 e⁻ - 1250 e⁻ T ~ 20°C

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

° Exp. deposited charge for a MIP in LIN FE before irr. ~ 10 500 e⁻

Ш

Results: hit efficiency

Requirements:

- Hit efficiency^{*}: $\varepsilon_{hit} > 99\%$ before irradiation (vertical incidence @ V_{bias} = V_{dep} + 50 V and 20°C)

 $\checkmark \epsilon_{hit} > 99\%$ already for $V_{bias} \leq 600 \text{ V}$ (for Φ_{eq} up to $1.2 \ge 10^{16} n_{eq}/cm^2$) ✓ No sign of breakdown up to 800 V during the test beams ✓ Sensor with $\Phi_{eq} = 2.0 \times 10^{16} n_{eq}/cm^2$ reaches 98% @ 650 V

* Excluding effects coming from readout chain

After irradiation

 $\epsilon_{\text{hit}} > 99\%$ after irradiation to 0.5 x 10¹⁶ n_{eq}/cm^2 (vertical incidence @ V_{bias} ≤ 800 V and -20° C) $\epsilon_{\text{hit}} > 98\%$ after irradiation to 1.0 x 10¹⁶ n_{eq}/cm^2 (vertical incidence @ V_{bias} ≤ 800 V and -20° C)

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Requirements:

- Best single point resolution: $\sigma_{hit} < \phi_{hit} < \phi_$

$r-\phi$ (25 µm direction)

Optimal angle: tan⁻¹(25/150) ~ 9.5°

✓ Both designs reach $\sigma_{hit} \sim 2 \mu m$ @ cluster size = 2

Results: spatial resolution

V_{bias} = 120 V; T ~ 20°C; online threshold* ~ 980 e⁻

z (100 µm direction)

Resolution independent of turn angle

✓ **Bricked** design resolution improves with turn angle \checkmark Bricked design effective pitch is 50 µm

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

UН

n	

Results: spatial resolution

Requirements:

- Best single point resolution: $\sigma_{hit} < \rho_{it}/\sqrt{12}$

$r-\phi$ (25 µm direction)

Optimal angle: tan⁻¹(25/150) ~ 9.5° \checkmark or or other than: $\sigma_{\text{binary}} = 7.2 \,\mu\text{m}$ Cluster size still above 1

$V_{\text{bias}} = 800 \text{ V}; \text{ } T_{\text{chiller}} \sim -35^{\circ}\text{C}; \text{ online threshold} \sim 1400 \text{ e}^{-1}$

z (100 µm direction)

Resolution independent of turn angle (but **degraded**) ✓ **Bricked** design resolution improves with turn angle (but effect **much smaller** than before)

🗖 Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Test Pulse Measurements on RD53A modules:

- Send test pulse to all pixels (consecutively)
- Count the number of pixels above threshold
- Find the amplitude µ₅₀ required for 50% occupancy
- Calculate the cross talk x:

$$x = \frac{r}{r+1}$$
 with: $r = \frac{\mu_{50}}{\mu_{150}}$ for **non-bitten** and **bitten** des

$$x = \frac{r}{2r+1}$$
 with: $r = \frac{\mu_{50}}{\mu_{200}}$ for **bricked** design

Results (similar chip settings, thresholds):

- **non-bitten**: x = 14%
- bitten: x = 8%
- x = 6% (cross talk to two neighboring pixels) - bricked:

Cross talks considerably reduced

(residual effects can be corrected in offline reconstruction)

Results: cross talk

Universität Hamburg

Results: noise

Currently under study: different requirements for each layer (different expected occupancies and fluences) **TBPX L1** example:

- Noise occupancy: $2 \ge 10^{-5}$ (~ 1% of expected occupancy for one BC)
- Total number of masked pixels < 1%
- Number of noisy pixels stable for leakage currents up to 350 µA

* Stuck pixels not yet considered in these plots

- Bricked - Bitten

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

The characterization campaign for the planar HPK sensors (both bitten and bricked designs) results in:

- Excellent production yield

- Very good electrical behavior before and after irradiation (breakdown always > 800 V) - Hit efficiency $\epsilon_{hit} \sim 99\%$ also for modules with Φ_{eq} up to 2.0 x 10¹⁶ n_{eq}/cm² - Resolution along the r- ϕ (25 µm) direction always below the binary level (*Pxl_{pitch}*/ $\sqrt{12}$) - Resolution along the z (100 µm) direction always below the binary level, even if degraded at high fluences - The bricked design exhibits better resolution wrt bitten design along the z direction, even if the difference is
- smaller after irradiation
- Low levels of cross talk and noise

✓ Both HPK planar sensor designs are qualified for operation in the CMS Pixel Phase 2 upgrade

final simulation results become available

Single chip sensors bump bonded to the CMS final production prototype chip (**CROC**) are just arrived: test and irradiation campaign in first half of 2022

- The choice about the **bricked design option** for central η region of TBPX L2-L3-L4 will be taken as soon as the

Example with bias dot:

- 5.6 x $10^{15} n_{eq}/cm^2$
- T ~ -26°C
- Up to 30 % efficiency drop at bias dot

of 99% @ perpendicular incidence

Efficiency loss at bias dot

💶 Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

CUTS: for DUT residuals

- C1, for x-axis (short axis): $\Delta y_{dut} < 0.150$ mm, For y-axis (long axis): $\Delta x_{dut} < 0.100$ mm
- C2, timing link: $\Delta x_{mod} < 0.150 \text{ mm}$ and $\Delta y_{mod} < 0.100 \text{ mm}$
- C3, isolation cut in Reference module plane: $\sqrt{(x_{\text{tele,mod 1}} x_{\text{tele,mod 2}})^2}$
- C4, Fiducial cuts: $(x_{tele,dut}, y_{tele,dut})$ within the fiducial region of DUT

• C5, isolation cut in DUT:
$$\sqrt{(x_{dut,1} - x_{dut,2})^2 + (y_{dut,1} - y_{dut,2})^2} > 0.6$$
 r

- C6, bunch crossing cut: 5 < BCID < 15
- C7, cluster charge cut: 5 ToT $< Q_{clutser} < Q_{H10\%}$
- C8, Match pairing: finding the correct pair of events in two devices (DUT and telescope):
 - The measurement *j* on device 1 is the closest to measurement *k* on device 2
 - The measurement k on device 2 is the closest to measurement j on device 1

$$+ (y_{\text{tele,mod 1}} - y_{\text{tele,mod 2}})^2 > 0.6 \text{ mm}$$

mm

