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SiGe BICMOS front end technology

NPN SiGe HBT

(depleted regions in light colors)
from wikimedia

An - — AP

Si ‘—I_A(Pp
Emitter SiGe
Base

Si
Collector

SiGe HBT = BJT with Germanium as base material:

- higher doping in base possible

- thinner base

- reduced base resistance R,

Grading of Ge doping in base:
— charge transport in base via drift
— reduced charge transit time in base

—> high current gain 3
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Leading-edge technology IHP SG13G2, 130 nm process featuring SiGe HBT with:

e Transistor transition frequency: ft=0.3 THz

* DC Current gain: =900
e Delay gate: 1.8 ps

- Implemented in silicon sensor

- Used for pre-amplifier and drivers

innovations
for high
performance

microelectronics

Leibniz-Institut fir
innovative Mikroelektronik



Giuseppe lacobucci

* project P.1.
» System design

Didier Ferrere
« System integration
« Laboratory test

Lorenzo Paolozzi
» Sensor design
» Analog electronics

Sergio Gonzalez-Sevilla

» System integration
 Laboratory test
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Established by the European Commission Particle PhyS ics

Main research partners:

Roberto Cardarelli

INFN Rome Tor Vergata Holger Riicker

IHP Mikroelektronik

Pierpaolo Valerio Magdalena Munker Marzio Nessl Mehmet Kaynak
« Lead chip design » Sensor design CERN & UNIGE IHP Mikroelektronik
« Digital electronics * Laboratory test
Ivan Peric i

Mateus Vicente Roberto Cardella Bernd Heinemann
- System integration « Sensor design KIT IHP Mikroelektronik
* Laboratory test » Analog electronics
Yana Gurimskaya Fulvio Martinelli
« Radiation tolerance * Chip design
 Laboratory test

Yannick Favre
Stefano Zambito + Board design . . ..
* Laboratory test * RO system Wide range of activities:
Stéphane Débieux Chip design and simulation, sensor design and
* Board design Chiara Magliocca . . . . . .
- RO system : Laborato,ﬁest simulation, sensor + chip testing in probe station,

) climate chamber, test-beam,...

Théo Moretti

* Laboratory test

Antonio Picardi
* Chip design
* Laboratory Test

Matteo Milanesio
* Laboratory test

Jihad Said
* Laboratory test

https://www.unige.ch/dpnc/en/groups/giuseppe-

iacobucci/research/monolith-erc-advanced-project/
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The ATTRACT prototype @;?TTRAET

MPW submission in 2019 funded by H2020:

* Hexagonal pixels with large collection electrode:
 Homogenous drift field
* Reduced breakdown probability at pixel
implant corners
100um pitch
25um p-type epitaxial layer

Four Matrices:
1. Active pixel
* Front end in pixel
* HBT preamp + driver (in pixel) + CMOS
discriminator (outside pixel)
2. Active pixel v2
* HBT preamp + CMOS discriminator
3. Limiting amplifier
 HBT preamp + HBT limiting amplifier
4. Double threshold
* HBT preamp + two CMOS discriminators

PIXEL MATRIX
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Analogue pixels of the ATTRACT chip

MPW submission in 2019 funded by H2020:

FACULTY OF SCIENCE
. Department of Nuclear and
Particle Physics
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PIXEL MATRIX
4 analog channels include:

HBT preamp + two HBT Emitter Followers to 500()
Resistance on pad.

o
Q
g
Qs
2
o |
s
z
m:
-
S

- Test of analogue channels to investigate HBT and

3 sensor performance
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https://iopscience.iop.org/article/10.1088/1748-0221/17/02/P02019

Efficiency [%)]

Test beam results — performance

for different sensor bias

CERN SPS 180GeV pion beam, FEI4 Telescope (0,~10um o,,~15um), 2 DUTs for timing reference
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https://doi.org/10.1088/1748-0221/17/02/P02019
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Efficiency as a function of high voltage:

[ / & i =

| CERN SPS Testbeam with 180 GeV/c pions
loreamp= 150 MA Vth= 6 o,

 —-DUTO

. — DUT1

7100 110 120 130 140 150 160
High Voltage [V]

80 90

* Large efficient operation range

e Differences of DUTs due to different
threshold values

Time resolution [ps]
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Time resolution as a function of high voltage:

1 t
v
CERN SPS Testbeam with 180 GeV/c pions
'preamp= 150 pA, Vth= 6 o,
| |
80 90 100 110 120 130 140 150 160
High Voltage [V]
_ OTOA0-TOAI

O = = (36.4 £ 0.8)ps
' V2

Without gain layer
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Timing residual:

350~ CERN SPS Testbeam with 180 GeV/c pions
L T Entries 4021
300— * Y2INdf 13/16
E ? | Sromorons [PS] 51.441.1
- 1 Events inside fit [%] 94.76
250 j + Events outside fit [%] 5.24
r * FWHM/2.355 [ps] 47 +1
200/ * ++
150/ ++ *
: R
100}
. t t HV = 160V
50— J* *“ loreamp = 150 pA
C » %
:L_L_"LJ.‘_‘.L .. 1igiliiayl
—900 -600 -500 -400 -300 -200-100 O 100 200 300

TOAG 16" TOAGy, [PS]

e Gaussian distribution of
timing residual


https://doi.org/10.1088/1748-0221/17/02/P02019

Test beam results —

for different pre-am

https://doi.org/10.1088/1748-0221/17/02/P02019

Efficiency as a function of preamplifier current:
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* Power consumption dominated by preamplifier current

Time resolution [ps]
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CERN SPS 180GeV pion beam, FEI4 Telescope (0,~10um o,,~15um), 2 DUTs for timing reference
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Time resolution as a function of preamplifier current:

\

CERN SPS Testbeam with 180 GeV/c pions
HV=120V,V =60,

40 60 80 100 120 140

'preamp [IJ.A]

» Efficiency > 99.5% and time resolution below 80ps even at low preamplifier current of 20pA

Particle Physics
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https://doi.org/10.1088/1748-0221/17/02/P02019
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The MONOLITH ERC Advanced Project iehui

Department of Nuclear and
Particle Physics

5 year ERC project to develop:
Monolithic silicon sensor

IHP SG13G2 electronics
already available at DPNC

Amplifier + Discriminator

able to measure precisely the 3D spatial position of charged particles

while providing at the same time picosecond time resolution.

WP1: Monolithic PIN diode

Optimization of:
geometry, time resolution,
electronics working point

WP3: Electronics

: Amplifier
R WP2: Gain Layer Discriminator
e Optimisation of: TDC
position, thickness, doping. R/O logic
H2020 ERC Advanced grant 884447, Radiation hardness study

July 2020 - June 2025

https://www.unige.ch/dpnc/en/groups/giuseppe- -W!’4: P':OdUCti?n Of_
iacobucci/research/monolith-erc-advanced-project/ Monolithic Multi-Junction PicoAD
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PicoAD sensor concept
MDNDUTH[@

Picosecond Avalanche Detector (PicoAD): EU Patent EP18207008.6

Schematic view of PicoAD sensor concept:

Large collection

electrode with circuitry
Placement of gain layer deep inside sensor:

* De-correlation from pixel implant size/geometry

2nd epitaxial layer- drift region —> High pixel granularity possible (spatial precision)

Gain layer * Only small fraction of charge gets amplified

1st epitaxial layer- absorbtion region - Reduced charge fluctuations (timing precision)

Substrate

Negative High Voltage
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PicoAD — 3D TCAD structure

Hexagonal collection electrodes

MONOLI
/

Gain layer
—

FACULTY OF SCIENCE
i Department of Nuclear and
Particle Physics

P-stops

N\

Epitaxial =

* 3D hexagonal pixel structure of pixels in matrix
- Relevant for pixel corners, breakdown around p-stops and
depletion and field in drift region

* Modelling of Si/Oxide interface (not presented here)

AN

Substrate
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2D cross section of 3D TCAD, electic field (color scale) and depletion (white line):

Depletion and electric field first
build up in absobtion layer, when
applying voltage to the backside

-15V
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PicoAD — 3D TCAD, electric field
and depletion

2D cross section of 3D TCAD, electic field (color scale) and depletion (white line):

UNIVERSITE
DE GENEVE

FACULTY OF SCIENCE

. Department of Nuclear and
uncil . .
Particle Physics

MONOLI

Electrtic field and depletion in
drift layer start to build up after
depletion of gain layer

‘Pockets’ under p-stops in 2nd
epitaxial layer deplete last

— Relevance of 3D modelling

and optimisation of inter-pixel
region

12
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PicoAD — 3D TCAD, electric field i
and depletion R

2D cross section of 3D TCAD, electic field (color scale) and depletion (white line):

After full depletion the drift field in
the 2nd epitaxial layer is build up

- Important to saturate drift
velocity

Planar field in drift and gain layer
except for p-stop region

LI -140V —> Careful optimization necessary to fully deplet and build up field in drift
region while maintaining stable high field in gain layer.
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Fe-55 spectrum - 120V

55-Fe measurement concept

Fe-55 source

(o))

o

o
III|IIII||III|IIIl||||IIIIII|IIII|IIII[IIII|

h* Gain e” Gain h* Gain e” Gain
1st peak 2st peak

: Negative High Voltage

* Only carriers passing through the gain layer are multiplied
* Two different peaks for e and h*
* Measurements performed in climate chamber to investigate gain as a function of temperature

14



55-Fe climate chamber
measurement results MOMNOL -
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First peak of the 55-Fe spectrum as a function of the High Voltage (HV): Second peak of the 55-Fe spectrum as a function of the High Voltage (HV):
5 > Dose 4 80 Dose 4 Dose 1
= 45 Wafer 6 Wafer 9 60 Wafer 6 Wafer 9 Wafer 9
X ' T=-20°C -o-T=-20°C P - T=-20°C -wT=-20°C o
o 40 o T=-10°C -=T=-10°C f'@//. 40 e T=-10°C -=T=-10°C ~a T =-20°C P
9'__ o T=420°C - T=+20°C /)7//) o T=+20°C -oT=4+20°C & T=+20°C - /4 Q //
(e 35 " (9/. /)7/.
i Dose 1 Yy 20 N3
30 Wafer 9 = ) 4
00
25 ~a T = -20°C p
20 ~a T = 420°C A 80
15 = 60 .
10 - 9 40 T
- :
5 20 O "
A A IS ' *
B0 85 90 95 100 105 110 115 120 125 130 135 '1:8 e % 85 90 95 100 105 110 115 120 125 130 135 140 148

Electron and hole gain increase with HV and temperature
Clear difference between wafer 6 and wafer 9 for the same dose (under investigation)
Lowest dose 1 shows almost no hole gain, used for normalization to get electron gain (next slide) 15



e gain

15
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55-Fe climate chamber
measurement results

e gain vs HV

Dose 4
Wafer 6 Wafer 9

- T=-20°C -aT=-20°C
v T=-10°C -==T=-10°C
o T=+420°C -=T=+20°C
Dose 1
Wafer 9
wa T =-20°C
T =+20°C

/O/"
Q/;
a ///)7 //)e
7y

1= - '
u | :
4 .
. ©
‘ ....... oo . - ' ’
A " | , |

B0 85 90 95 100 105 110 115 120 125 130 135 140 145

HV [V]

e Gain up to above 20 for wafer 9

* Gain most likely underestimated due to space charge
effects from high local charge from 55-Fe

e gain

h* gain

N W S, OO0 O N @

i UNIVERSITE
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Particle Physics

European Research Council
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Gain ratio vs e gain

. Dose 4 Dose 1
/ Wafer 6 Wafer 9 Wafer 9

o T=-20C -=T=-20°C vt T = -20°C
‘T=-10°C -=T=-10°C Bk
+T=420°C -=T=+20°C " T=4+20°C

\‘ .
¢ ¢

8l

2 4 6 8 10 12 14 16 18 20 22 24

e gain

Consistent behaviour of the 3 samples
Ratio of e/h-gain decreaseds at higher e-gain values
(expected to saturate)

Possible explanation: space charge effects
16



Space charge effects in picoAD

double junction sensor

-

Transient 3D TCAD simulation of point like 55-Fe charge deposition in

absorption layer:

Space charge:

50ps after charge generation — before charge generation:

A

A
Drift Drift ||
region region
................ Y SRR, |
Absorbtion Absorbtion
region region

Electric field:

'ﬁ
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33 4
Y
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50ps after charge generation — before charge generation

Initial point-
like 55-Fe
charge

Significant
reduction of
TiEId in gain Abs(ElectricField-V) (V'em*-1)
ayer 73810403
.l.m»m
S3amn Gain layer
1.233e+04
1.891e+04
2.5480+04
-3.205e+04

- Reduced e-gain for higher local charge densities (higher initial charges or higher field values in gain layer, resulting

in larger number of multiplied charges)

- Transient field simulation necessary
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Efficiency [%]

Test beam results for PicoAD

CERN SPS 180GeV pion beam, FEI4 Telescope (g, ~10um Jy~15um),

2 DUTs for timing reference

Efficiency as a function of preamplifier current:

[ T T | T T T T T T T T T T T T T T T H
100~ ¥ —
- — —4-
99.5 /*, E
29 E
98.5 - / CERN SPS Testbeam with 180 GeV/c pions .
r + No gain, 24 um depletion , HV= 120V i
98 - Y PicoAD, 15 um depletion , HV= 125V , Preliminary .
97.5- .
97 C 1 | 1 | | | 1 1 | | | | 1 | | | ]

0 20 40 60 80 100 120 140
Ipreamp [MA]

Improved efficiency for prototype with gain
layer, despite reduction of epitaxial thickness
w.r.t. prototype with gain.

Time resolution [ps]

rc

European Research Council
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Time resolution as a function of preamplifier current:
200~ i
180
160 - \ CERN SPS Testbeam with 180 GeV/c pions
B \ ¥ No gain, 24 um depletion , HV= 120V
140 —
- \ ? PicoAD, 15 um depletion , HV= 125V, Preliminary
120 — \
100 \
80 - i\
60 - —r——
20— :
0 : 1 | | | | | 1 | 1 | | 1 | | 1 |
0 20 40 60 80 100 120 140
Ipreamp [HA]

OpicoaDp, = (24.2 £ 0.7)ps

—> Proof of concept, not optimized for timing yet.

—> Efficiency > 99.5% and time resolution ~40ps even at low preamplifier current of 20pA.
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Picosecond TDC

Picosecond TDC test chip

TDC Time Resolution

—

—'3.0

v 1.0

0 100 200 300 400 500 600
Time of flight [ps]

Integrated in MONOLITH p1 Prototype: under test

Improved TDC version back from foundry in April 2022.
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Conclusion and outlook

* Proof of concept of PicoAD sensor + HBT frontend:
e >99.9% efficiency ~25ps time resolution

e Study of fundamental electron-hole gain processes in multi junction sensor
* Development of picosecond TDC for fully monolithic MONOLITH chip

 Development of optimised sensor with TCAD
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