

SINTEF 3D pixel sensor pre-production for the **ATLAS ITk**

Marco Povoli¹ O. Koybasi ¹ A. Kok ¹ A. Summanwar¹ O. Rohne² O. Dorholt² A. L. Read² H. Sandaker² A. L. Heggelund² B. Stugu ³ S. K. Huiberts ³ M. E. Lauritzen ³ A. Traeet ³

¹SINTEF MiNaLab, Oslo, Norway ²University of Oslo, Norway ³University of Bergen, Norway

17th (Virtual) "Trento" Workshop on Advanced Silicon Radiation Detectors

University of Freiburg, 2-4 March 2022.

\bigcirc Outline SINTEF

Introduction 1

- Full batch yield
- Planar test structures
- 3D test structures
- 3D pixel detectors
- Effect of sintering estimation
- 3 Lessons learned
 - Deep Reactive Ion Etching DRIE
 - Wafer bowing/warping
- 4 Conclusion and future plans

Recent history of 3D technology at SINTEF

YEAR	Project	Wafer type	Active thickness [μm]	Electrode diameter [μm]	Remarks
2006	Run-1	4" SOI	230	15	N-type, low mechanical yield
2008	Run-2	4" SOI	230	15	50% yield (roughly)
2010	Run-3	4" SOI	230	15	Low yield (2 out of 24 wafer ok)
2018	Run-4*	6" Si-Si	50 & 100	4	Very good yield (FE-I4 layout)
2019	Run-5*	6" Si-Si	150	6	OK yield (RD53 A/B with active edge)
2021	Run-6*	6" Si-Si	150	6	Completed Feb. 2021. ATLAS pre-production. (RD53 A/B with common layout with FBK, slim-edge termination)

*funded by Norwegian ATLAS R&D

Fabricated wafers

Pixel layout - $50 \mu m imes 50 \mu m$ - 1E configuration

			•	•	•	
	1		. •			
· · ·	•			• . •	1.1	
	-	•	· .	· .	<u> </u>	
1			٠	· .		
		. Ľ.	٠T	• T •		1

- 24 wafers, 6" Si-Si p-type (ICEMOS 150 μ m active)
- 2 test wafers, 6" Si-Si p-type (PiKEM/INSETO (UK) 150µm active)
- Slim-edge (ohmic column 'fence'), 3D electrodes (6µm diameter)
- Depth: N-type electrodes 115μ m, P-type electrode 150μ m
- All processing steps in-house except the p-spray implant
- P-spray dose increased in this run
- Layout performed at SINTEF in collaboration with FBK and CNM
- Common layout with FBK (6" wafers)

3D RUN6 - Fabrication process

- 1. P-spray implantation + oxidation
- 2. Etching mask for DRIE (aluminium)
- 3. DRIE of n+ columns
- 4. Phosphorus doping and poly filling
- 5. Planar n+ doping
- 6. Repeat steps '2-5' for p+ columns (Boron)
- 7. Contact opening
- 8. Temporary metal deposition and patterning
- 9. TEMP METAL MEASUREMENTS
- 10. Temporary metal removal and cleaning
- 11. Final metal deposition, patterning and sintering
- 12. Passivation deposition and patterning
- 13. Final baking if necessary

\rightarrow 60 main steps! 10 months of net processing

Temporary metal test results

TEMP METAL deposited on thermal oxide, biasing both N+ and P+ from the front!

Selection criteria for yield calculation

Specifications given in the tender:

- $\mathcal{C}_{pix} < 100 pF$ (from C-V of 3D diode) \checkmark
- $V_{depl} < 10V$ (from C-V of 3D diode) \checkmark
- $V_{BD} > V_{depl} + 20V \checkmark$

• SLOPE:
$$rac{I_{LK}(V_{depl}+10V)}{I_{LK}(V_{depl}+5V)} < 2$$
 \checkmark

- $I_{LK}(20^{\circ}C) < 2.5 \mu A/cm^2$
- Chuck temperature on automatic prober is 24° C (current increase of a factor ~1.5)
- Measurements performed before SINTERING and PASSIVATION!
- The distance between the metal and the SiO₂/Si interface is smaller and the surface is not fully terminated ⇒ expected higher current

3D RUN6 - Fabrication YIELD

RD53B pixel detectors MEASURED BEFORE SINTERING

63.46 %

72.44 %

75.16 %

				TIER1	TIER2	TIER3	TIER4	TIER4	TIER4+3	TIER4+3+2
WAFER #	Thickness [µm]	SENSOR TYPE	# of sensors	BAD	MARGINAL	GOOD	BEST	YIELD STRICT	YIELD SOFT	YIELD VERY SOFT
G17	150 + 500	RD53B	24	1	0	2	21	87.50 %	95.83 %	95.83 %
G15	150 + 500	RD53B	24	3	0	1	20	83.33 %	87.50 %	87.50 %
G11	150 + 500	RD53B	24	4	0	1	19	79.17 %	83.33 %	83.33 %
G14	150 + 500	RD53B	24	3	1	1	19	79.17 %	83.33 %	87.50 %
G7	150 + 500	RD53B	24	3	0	3	18	75.00 %	87.50 %	87.50 %
G18	150 + 500	RD53B	24	3	0	3	18	75.00 %	87.50 %	87.50 %
G1	150 + 500	RD53B	24	2	1	4	17	70.83 %	87.50 %	91.67 %
G12	150 + 500	RD53B	24	6	0	1	17	70.83 %	75.00 %	75.00 %
G16	150 + 500	RD53B	24	4	2	1	17	70.83 %	75.00 %	83.33 %
G20	150 + 500	RD53B	24	6	1	0	17	70.83 %	70.83 %	75.00 %
G21	150 + 500	RD53B	24	3	0	4	17	70.83 %	87.50 %	87.50 %
T2-2	150 + 500	RD53B	24	6	0	1	17	70.83 %	75.00 %	75.00 %
G5	150 + 500	RD53B	24	7	0	1	16	66.67 %	70.83 %	70.83 %
G19	150 + 500	RD53B	24	6	0	2	16	66.67 %	75.00 %	75.00 %
G22	150 + 500	RD53B	24	8	0	0	16	66.67 %	66.67 %	66.67 %
G2	150 + 500	RD53B	24	5	2	2	15	62.50 %	70.83 %	79.17 %
G24	150 + 500	RD53B	24	9	0	0	15	62.50 %	62.50 %	62.50 %
G4	150 + 500	RD53B	24	3	1	6	14	58.33 %	83.33 %	87.50 %
T2-1	150 + 400	RD53B	24	6	1	3	14	58.33 %	70.83 %	75.00 %
G3	150 + 500	RD53B	24	6	0	5	13	54.17 %	75.00 %	75.00 %
G6	150 + 500	RD53B	24	7	1	3	13	54.17 %	66.67 %	70.83 %
G8	150 + 500	RD53B	24	7	2	3	12	50.00 %	62.50 %	70.83 %
G9	150 + 500	RD53B	24	7	2	3	12	50.00 %	62.50 %	70.83 %
G13	150 + 500	RD53B	24	10	0	2	12	50.00 %	58.33 %	58.33 %
G10	150 + 500	RD53B	24	9	0	4	11	45.83 %	62.50 %	62.50 %
G23	150 + 500	RD53B	24	21	3	0	0	0.00 %	0.00 %	12.50 %

RD53B TOT.

624

- Better yield than previous run
- T2-1 and T2-2 comparable or better than the rest
- Other interesting wafer are **G23** and **G24** (more on this later...)
- Leakage current still a bit high (more on this later...)
- Yield calculated with a relaxed spec on leakage current for now...

I-V of planar test diodes

Measured before sintering

- Breakdown voltages around 350 V, (p-spray dose increased in RUN6)
- Average current value **before sintering** equal to **1 nA** (corresponding to life times of roughly **6 ms**)
- C-V measurements show saturation at 10 V (ICEMOS) and 20 V (PiKEM, INSETO) (difference in resistivity)
- Saturation value of the C-V curves suggests an effective active volume thickness of $135 \mu m$
- Boron diffusion from the support wafer results in a loss of active volume (doping profile measured on RUN5 wafers)

wafer ton

G24 - top

G24 - bottom

1.30E-10

1.20E-10

1 10E-10

1.00E-10

MOS Capacitor C-V Measured before sintering

- Loss of oxide thickness during processing was greatly reduced (compared to RUN5)
- Slight difference in Tox between top and bottom part of the wafer (not critical)
- Extracted values:

$$\begin{array}{l} - & T_{ox} = 950 \, nm \\ - & O_{ox} = 2 \times 10^{11} \, cm^{-2} \end{array}$$

Gate Voltage [V]

- Higher p-spray dose results in 'stretching' of the C-V curves
- Expected decrease in oxide charge after sintering
- Wafer G24 lower oxide charge

GATED DIODE 30-FINGERS

- Surface recombination velocity is LOW
- This value is expected to drop drastically after sintering
- Mesurements performed at $V_{p+} = -15V$
- G24 shows the lowest values at this stage

3D DIODES (50x50 - 1E)

Measured before sintering on the manual prober ($T = \sim 21^{\circ}C$)

- Clear current reduction when comparing to the previous run
- Reduction in breakdown (**p-spray doping higher** by a factor ~ 10)
- G24 and T2-1 are lower than the spec even before sintering
- T2-1 seems to require slightly higher voltage to deplete (\sim 9V)

40x40 cells + slim-edge

RD53B pixel detectors - WAFER G17 (GOOD)

Measured before sintering ($T_{chuck} = 24^{\circ}C$)

Measured currents

Current at 25V

YIELD (tier map)

- RD53B: Yield 87.50%
- Current specification relaxed in the calculation for now (missing sintering and passivation)
- Current level fairly uniform
- A bit more spreading on the breakdown (sintering and passivation should help)
- Current reduction with respect to the previous run

RD53B pixel detectors - WAFER G10 (POOR)

Measured before sintering ($T_{chuck} = 24^{\circ}C$)

Measure currents

Current at 25V

YIELD (tier map)

- RD53B: Yield 45.83%
- More detectors breaking down before 10V (defective)
- More spreading in current value
- Slightly lower breakdown with some 'marginal' detectors

Effect of Sintering and Passivation

MOS capacitor, Gated diode, 3D diodes (manual prober)

- MOSCAP: reduction and stabilization of the oxide charge
- GATED DIODE: considerable reduction in surface recombiantion velocity
- 3D DIODES: reduction in reverse current, goes below the spec at 25V
- Post sintering current reduction by a factor between 1.2 and 1.4 on 3D diodes

Effect of temperature on the current measurements

RD53B - Manual prober (21°C) vs. Automatic prober (24°C)

- The automatic prober is a fairly 'enclosed' system with little air circulation
- The temperature on the chuck is $24^\circ C$
- Leakage current **doubles** every $7^{\circ}C$
- The **specification** is given at $20^{\circ}C$
- The measurements can be scaled to the desired temperature using the following approach...

Scaling of reverse current to $20^{\circ}C$

Median current value at 25V of bias for all wafers

- Wafer T2-1 was already under the spec at $24^\circ C$
- Scaling and accounting for sintering (factor 1.3) wafer G24 is under the specification
- The rest of the wafers sit more or less ON the specification

Why does T2-1 stand out?

PiKEM (UK) - substrate material from Silicon Valley Microelectronics (US)

- T2-1 went through all the processing steps together with the rest of the wafers
- The current on the pixel detectors is considerably lower
- The only other difference is the higher depletion voltage
- The substrate resistivity seems to be lower than for ICEMOS (Topsil) wafers [8 $k\Omega cm$ vs. 20 $k\Omega cm$]
- Is the quality of the starting material different? Difficult to tell...
- Additional investigation only possible with destructive testing after bump bonding

Why does G24 stand out?

- This wafer had to **skip the last two thermal steps** (planar Boron doping and final anneal)
- The 3D part of the process was completed so it was decided to try biasing from the support wafer (extra processing)
- This resulted in lower Q_{ox} and s₀ (~ 5 × 10¹⁰ cm⁻² and 2 cm/s respectively)
- Skipping the Boron doping saves roughly 200*nm* of thermal oxide
- The **TEMP METAL** is deposited on the **oxide** (not on the passivation) ⇒ surface depletion at lower bias
- A **thicker oxide** can delay the surface inversion under the TEMP METAL grid ⇒ **less surface current**
- We are currently testing the deposition of the TEMP METAL on top of the passivation (results next week)

Lessons learned in RUN 6

Deep Reactive Ion Etching - DRIE

Integrity of the masking layer

- The DRIE process is masked using an Aluminium mask deposited in 5 steps of $0.2 \mu m$ (1.0 μm in total)
- During DRIE aluminium grains can detach leaving a void, the multi-layer mask ensures full coverage at all times
- Depositing the mask in one step would reduce process complexity and duration (higher risk!)
- This was tested on wafer G23
- This gave confirmation that a single layer mask is not sufficiently reliable
- The detectors breakdown before full depletion or slightly after

Wafer bowing and warping (1) Tracking during the process

- Measured using the ellipsometer (10 points take roughly 3-4min per wafer)
- Dedicated wafer support holding the wafers only at the exclusion zone
- The weight of the wafer will have an effect on the measurement
- Considerably easier to control bowing/warping with thicker support wafers
- Wafer warping ⇒ higher resolution measurements (30 min/wafer) (only done at critical steps in the process)

Wafer bowing and warping (2)

Higher resolution measurements (examples)

After complation of N+ columns and planar doping

WAFER ID = T2-2 - Support + Device =650 μm - Curvature = 48.19 μm

After etching of the P+ polysilicon from the wafer backside

WAFER ID = G1 - Support + Device =650 μm - Curvature = 113.41 μm

Conclusions and future plans

- We have completed the 6th run of 3D detectors at SINTEF MiNaLab
- Replacing the ACTIVE-EDGE with the SLIM-EDGE termination contributed to much easier processing
- Temporary metal measurements before sintering are promising but will require verification after bump bonding
- Measurements on test structures after completion of the processing seems to further improve the results
- We are currently completing the patterning of the TEMP METAL on top of the PASSIVATION
- It should be possible to start electrical characterization soon
- Final wafer inspection and curvature measurements will be performed before shipment
- Functional characterization should follow shortly after

Technology for a better society

