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Intfroduction

o The TOOMMPET project: molecular imaging with ultra-high resolution

o  First silicon small-animal scanner prototype

m  SNSF SINERGIA four years project (from 2021 Q2)
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m  Three partners:
UNIGE: Construction of the 100UPET small-animal scanner

EPFL: Sophisticated imaging reconstruction with ML and NN
to cope with the 103 possible line-of-repsonse

HUG: Study the onset and progression of atherosclerotic plaques
in arteries to better understand, monitor and treat atherosclerosis
in ApoE*/- mice

Atheroscleroh

With today's PET technology, small blood vessels can
only be visualized in their entirety (A). The proposed
new PET technology will allow the study of changes in
the lining of small blood vessels, such as
atherosclerotic plaques (B).
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Positron Emission Tomography (PET) imaging

o PET is a nuclear medicine method to study metabolic processes in the body

o Radiotracer is injected in a body; Positrons from the radionuclide annihilates with electrons of the nearby tissue
«—— Two back-to-back 511 KeV photons are emitted and detected in coincidence

lines-of-response (LoR) are defined by the volume between the sensitive elements detecting the two photons (also called volume-of-response)

| PET images are reconstructed from the

Overview of current small-animal PET scanners
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0 To access ultra-high resolution molecular imaging => Reduce the LoR volumes by exploiting:
O Better timing resolution for coincidence measurement; Improved depth-of-interaction measurement;

O Improved spatial resolution with higher detection volume granularity => HEP based silicon pixel detectors

m  The higher 100UPET granularity will reduce the noise-like combinatorics artifacts during projection of LoRs
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Silicon pixel detectors at UNIGE

0 Long tradition at UNIGE with hybrid silicon detectors:
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o pixel detectors for ATLAS IBL and ITk upgrade; strips (ATLAS SCT, AMS, DAMPE)
o In 2015: kick-off R&D on monolithic pixel sensors in SiGe BiCMOS technology

innovations
o Aiming MAPS with timing resolution below 100ps for high
rfi
m  MONOLITH project, see talk by Magdalena Munker m
microelectronics

m  FASER pre-shower detector, see talk by Lorenzo Paolozzi

Leibniz-Institut fir
innovative Mikroelektronik

Monolithic prototype ASICs for timing purposes
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https://indico.cern.ch/event/1096847/contributions/4743692/
https://indico.cern.ch/event/1096847/contributions/4743730/

The Thin Time-of-Flight (TT-PET) project

o A SNSF SINERGIA project from 2016 to 2019

Monolithie pixel sensor:

(] ) Photon Detection Layer
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(3) Cooling block

“Tower” of 12x5 = 60 detection layers
+ cooling block

16 Towers all around to form the scanner

Volumetric Spatial Resolution [mm?]

(Compilation of digital PET/MRI for Preclinical Applications

1 the doctoral thesis of B. WeiBler, 2016)
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The Thin Time-of-Flight (TT-PET) project
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o TT-PET project: from 2016 to 2019

o Demostrator chip achieved target performance, §‘°°-°33-1 1000013, 100.00%3,:99.99 1333 :99.99 105, 100.001,:99.99°53, 19999 5] 199,963

P. Valerio et al., JINST 14 (PO7013) (2018), sooémt:_s 00078, 10000, 9938 2 10000, 999932 3008’38 mon'Lt

L. Paolozzi et al., JINST 13 (PO4015) (2018), me o ww o wmmm o mm o ww o we wmE

L. Paolozzi et al., JINST 14 (P0O2009) (2018) j

O Scanner completely engineered,

D. Ferrere et al., arXiv:1812.00788

o Performance simulated

E. Ripiccini et al., arXiv:1811.12381

O lterative imaging reconstruction produced Monte-Carlo Truth Recon

D. Hayakawa PhD thesis, http://dpnc.unige.ch/THESES /THESE_HAYAKAWA.pdf Eo pe
Change of paradigm in PET imaging is possible with monolithic pixel detectors £ i

0 Can we do even better? Must reduce even further the “LoR volume”

o by having better spatial resolution, pushing the position measurement down to the
intrinsic limits given by the positron mean free path in body




The TO0OMPET scanner

o Scanner simplified and improved design, avoiding acceptance inefficiency from cooling blocks

O  Monolithic T00MPET detector ASIC: 2.5 x 3 ecm? active pixel matrix; 100 gm pixel pitch; 250 Jm thick silicon sensor

o Single silicon detection layer composed by 2x2 chips assembled, covering about 30 cm?

o 4 “towers” compose the scanner. 60 detection layers on each tower = 960 chips!

®  Large number of services and interconnections, requiring innovative design. Two possible designs under study
u 5 silicon detector layers (20 chips) stacked on a PCB, staggered for wire-bonding. 12 modules are stacked in a tower

u 1 detection layer (2x2 chips) are interfaced to a FPC via ACF bonding. 60 FPCs are stacked in a tower
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https://agenda.linearcollider.org/event/9211/contributions/49469/attachments/37464/58685/ILCX_MVicente_ACF.pdf

The TOOUPET scanner

Allpix Squared (GEANT4) simulation’of :
2 positron sources inside 100UPET scanner

Monte Carlo simulations has shown a disruptive jump in the
scanner’s resolution and sensitivity

o Efficiency can be increased with absorber layers
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The TOOUPET scanner

Monte Carlo simulations has shown a disruptive jump in the -

scanner’s resolution and sensitivity

o Efficiency can be increased with absorber layers

m |t is a compromise between efficiency and resolution

b
A
a) TT-PET geometry with 100 Um pixel — ;
Increase in resolution, same detection efficiency C =z
b) New 100UPET aeometry: without Pb absorber: ‘

Efficiency: 4—6%, slight gain in resolution
c) 100UPET with additional Pb absorber:
Eff: 6—14%, lower resolution with scattering on Pb

Allpix Squared (GEANT4) simulation’of :
2 positron sources inside 100UPET scanner




ASIC prototypes

“ 4 SN T ST e e
o TOOMPET ASIC will spin-off from noGAIN and PicoAD prototypes
o Hexagonal 65 Um wide pixel (equivalent 100um XY pitch) for R&D investigation
o Tested at CERN SPS H8 beam-line in Q2 2021

o >99.5% detection efficiency (on both prototypes)

o Timing resolution of 36.4 * 0.8 ps (without gain) and 24 £ 0.7 ps* (with gain layer)
*First PicoAD prototype. Sensor and front-end design still to be optimized + ps TDC
m  G.lacobucciet al 2022 JINST 17 PO2019 (no gain prototype)
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https://iopscience.iop.org/article/10.1088/1748-0221/17/02/P02019

Detector assembly prototyping
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o Common interest in stacking MAPS for detection transition from 2D layers (pixels) to 3D volumes (voxels)

o Pixel chamber project: Solid state counterpart to the bubble chamber

m  Active target, hosting the primary IP in fixed target experiments
m  Stack of 216 ALPIDE chips (30x15x11 mm3), resulting in a 3D volume with 108 voxels (29x27x50 pm?3)

o  R&D and prototyping work started stacking 50 Um thick ALPIDE chips i e

H=10.8 mm

O 2 stack versions: Staggered for wire-bonding and ACF bonded to flex

m  First mechanical assembly with 4 dummy chips stacked using 20 Um epoxy film. Stack to be wire-bonded soon

m  Successful single-module flex already produced. Stackable quad-module flex finalizing design

3-layers ALPIDE stack


https://iopscience.iop.org/article/10.1088/1748-0221/16/12/C12029

Conclusion and ovutlook
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o  PET scanners are an important diagnostic tool that has been improving in an astounding way over the years

and will continue to improve

o Pixelated silicon sensors have the enormous potential to enable ultra-high-resolution molecular imaging

o  The TOOMPET SNSF SINERGIA project will deliver a small-animal scanner based on silicon technology with

expected 0.3 mm spatial resolution, one order of magnitude resolution improvement
o TOF below 10ps could be added, when delivered by the MONOLITH project

0 Innovative ASIC design and module construction techniques are being developed
o  Silicon-sensor technology will continue to improve and its cost will go down

m  In the future, scanners larger than those for small-animals could be realised


https://indico.cern.ch/event/1044975/contributions/4663683/

