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Depleted Monolithic Active Pixel Sensors

● Want minimal material budget in high radiation and high rate environments
→ Monolithic pixel detector combining sensor and readout chip in one wafer
 

● Require radiation hardness to levels of 10¹⁵ neq/cm² 
● Only achieved by depletion using high bias voltage

→ High-resistivity substrate with high voltage capabilities

● Availability of commercial CMOS processes with such materials
→ Fast and high volume production, less complex 
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Small VS Large Collection Electrode

Large collection electrode:
● Electronics inside charge collection well
● Large sensor capacitance O(100fF) 

● Compromises noise and power/speed
● Risk of cross-talk

● Short drift distances
● Few regions with low E field

● Less trapping → radiation hard

Small collection electrode:
● Electronics outside charge collection well
● Small sensor capacitance (< 5 fF)

● Low analog power budget (noise, speed)
● Less prone to cross-talk

● Longer drift distances
● Potentially regions with low E field

● Modification needed for radiation hardness
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The Monopix Chips

TJ-Monopix2:
● 180nm TowerJazz CMOS Technology
● Small collection electrode
● ~2x2 cm² matrix with 33x33 μm² pixel pitch
● Substrate resistivity ~1 kΩ/cm

LF-Monopix2:
● 150nm LFoundry CMOS Technology
● Large collection electrode
● ~2x1 cm² matrix with 50x150 μm² pixel pitch
● Substrate resistivity > 2 kΩ/cm

Same fast column drain readout architecture (FEI-3 like)
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TJ-Monopix1: Recap

● Based on ALICE ITS pixel detector ALPIDE

● Modified existing process to increase radiation hardnesss

→ Add n-type layer
     W. Snoeys et al. DOI: 10.1016/j.nima.2017.07.046

● Still observe significant efficiency loss to ~70% after 
irradiation to 1x10¹⁵ neq/cm²
● Charge loss due to E field shaping under deep p-well
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TJ-Monopix1: Recap

● Possible improvements:

1)  Lateral E field enhancement → n-gap or extra deep p-well

2) Higher input signal → thick Czochalski (Cz) substrate

● Compare 30 μm epitaxial chip with n-gap and 300 μm Cz chip with additional deep p-well 
● From simulation and measurements n-gap and additional deep p-well work equally well
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TJ-Monopix1: Recap

● Testbeam results of 5 GeV electron beam at DESY
● Increase in efficiency after irradiation to 10¹⁵ neq/cm² to:

● 87.1% for 30 μm epitaxial chip with n-gap
● 98.6% for 300 μm Cz chip with deep p-well 

→ TJ-Monipix1 efficient if enough charge compared to threshold is created

30μm Epi: 87.1% @ TH=500e⁻ 300μm Cz: 98.6% @ TH=490e⁻
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TJ-Monopix2: Design

● Increase chip size (2x2 cm²) while reducing pixel pitch (33x33μm²)
● Improve FE to lower noise and threshold
● Extend ToT information from 6 to 7 bit
● 3 bit in-pixel threshold tuning

→ More in-pixel logic at smaller pixel size

● Command-based slow control from RD53B
● Four LVDS lines for I/O (additional 2 for debugging)
● 8b10b encoded data stream with hit and register data

→ Use BDAQ53 readout board developed for RD53

→ Small and easy lab setup

K. Moustakas, 2021
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TJ-Monopix2: First Measurements

● First lab tests checking ENC and threshold
● Threshold tuning works, dispersion improves

● Expected MIP MPV ~1.5 - 2 ke  at full depletion for ~30 ⁻ μm silicon
● Not minimum achievable threshold
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TJ-Monopix2: First Measurements

Successfully run source scan using ⁵⁵Fe source:
● Two FE flavors, right half has lower threshold

→ Chip works and detects radiation

Occupancy map Charge spectrum
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TJ-Monopix2: Use Case

DMAPS candidate for Vertex detector upgrade of Belle II
● 5 layer pixel detector with CMOS sensors:

Layer 1-2: Self supporting all-silicon ladders

Layer 3-5: Carbon-fiber support frame,
         ALICE like staves

● Low material budget (sensors thinned to ~50 μm)

→ TJ-Monopix2 chosen as prototype for development of     
  new pixel sensor OBELIX for VTX proposal
     (also see upcoming talk by M. Babeluk)
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LF-Monopix1: Recap

● First DMAPS (2016) with full in-pixel electronics 
and column drain readout 

● TID hard tested up to 100 Mrad 
● After irradiation to 1x10¹⁵ neq/cm²:

● Uniform hit detection efficiency of ~99.4%
● In-time efficiency ~96.6%

● But:
● Column length half of final target
● Large pixel pitch of 50x250 μm²
● Observed cross-talk from one digital signal

into collection node

→ LF-Monopix2
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LF-Monopix2: Design

● Large collection electrode

● Increase chip size (2x1 cm²) while reducing pixel 
pitch (50x150 μm²)

● Total of 7 matrices with 3 CSA types
● CSA1 proven design from LF-Monopix1

● 6 bit ToT information

● 4 bit in-pixel threshold DAC
● Two different tuning circuit designs

● 40MHz / 160MHz CMOS or LVDS serial output
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LF-Monopix2: I-V Curves

● Wafers successfully thinned down to 100 μm
and backside processed

● For all tested chips breakdown voltage above 
350 V
● Significant improvement to LF-Monopix1
● Fluctuations at low voltages due to limited 

current range of SMU
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LF-Monopix2: Threshold Tuning

● 4 bit in-pixel threshold DAC
● Threshold dispersion improves after tuning (here: 32 columns of CSA1)

● Expected MIP MPV ~6 ke  (100 ⁻ μm silicon)
● Mean ENC (~100 e ) as expected⁻

Threshold dist. after tuningThreshold dist. before tuning ENC distribution
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LF-Monopix2: Source Scan and Calibration

● Use ²⁴¹Am source with variable x-ray target

● Chip matrices 1-3 & 1-4 (Col. 16-48) tuned
to approx. 2ke  threshold⁻

● Occupancy map and ToT distribution as expected
● Sensor fully illuminated
● ToT increases according to X-ray energy of targets

→ Preliminary LF-Monopix2 C_Inj ~ (2.90 ± 0.25) fF
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LF-Monopix2: Efficiency

● Preliminary results from first LF-Monopix2 testbeam at DESY (5 GeV electrons):
● 100μm thick chip at 60V bias, unirradiated
● Threshold ~2.2ke⁻

● ToT and residual distribution as expected
● Uniform hit detection efficiency >99% 

Residuals, 2x2 Pixels
Hit Detection Efficiency: 99.51%, 

2x2 Pixels
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Conclusion and Outlook

● Successfully modified TJ-Monopix1 sensor to counter efficiency loss after irradiation

● TJ-Monopix2 is working and used as prototype for Belle II VTX Upgrade

● LF-Monopix2 fully operational
● Promising uniform hit detection efficiency >99% before irradiation after first testbeam

● Upcoming testbeam campaigns for both DMAPS
● More detailed efficiency and irradiation studies to come
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Thank You for 
Your Attention

The measurements leading to these results have been performed at the Test Beam Facility at DESY 
Hamburg (Germany), a member of the Helmholtz Association (HGF)

This project has received funding from the European Union’s Horizon 2020 Research and Innovation 
programme under GA No. 675587-STREAM, 654168 (AIDA-2020) and 101004761 (AIDA-Innova)
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