

TRENTO WORKSHOP 2022 FREIBURG DEPLETED MONOLITHIC ACTIVE PIXEL SENSORS (DMAPS) FOR HIGH RADIATION AND HIGH RATE ENVIRONMENTS

L. Schall (University of Bonn) And the LF-/TJ-Monopix Design and Measurement Teams from Bonn, CERN, CPPM, CEA-IRFU

02.03.2022

Trento 2022 – Lars Schall

Depleted Monolithic Active Pixel Sensors

- Want minimal material budget in high radiation and high rate environments
 - \rightarrow Monolithic pixel detector combining sensor and readout chip in one wafer
- Require radiation hardness to levels of 10¹⁵ neq/cm²
 - Only achieved by depletion using high bias voltage
 - → **High-resistivity substrate** with high voltage capabilities
- Availability of **commercial CMOS processes** with such materials
 - \rightarrow Fast and high volume production, less complex

Small VS Large Collection Electrode

Small collection electrode:

- Electronics **outside** charge collection well
- Small sensor capacitance (< 5 fF)
 - Low analog power budget (noise, speed)
 - Less prone to cross-talk
- Longer drift distances
- Potentially regions with low E field
 - Modification needed for radiation hardness

Large collection electrode:

- Electronics **inside** charge collection well
- Large sensor capacitance O(100fF)
 - Compromises noise and power/speed
 - Risk of cross-talk
- Short drift distances
- Few regions with low E field
 - Less trapping \rightarrow radiation hard

The Monopix Chips

TJ-Monopix2:

- 180nm TowerJazz CMOS Technology
- Small collection electrode
- ~2x2 cm² matrix with **33x33 μm²** pixel pitch
- Substrate resistivity $\sim 1 \text{ k}\Omega/\text{cm}$

LF-Monopix2:

- 150nm LFoundry CMOS Technology
- Large collection electrode
- ~2x1 cm² matrix with **50x150 \mum²** pixel pitch
- Substrate resistivity > 2 kΩ/cm

Same fast column drain readout architecture (FEI-3 like)

TJ-Monopix1: Recap

- Based on ALICE ITS pixel detector ALPIDE
- Modified existing process to increase radiation hardnesss
 - → Add n-type layer
 W. Snoeys et al. DOI: 10.1016/j.nima.2017.07.046
- Still observe significant efficiency loss to ~70% after irradiation to 1x10¹⁵ neq/cm²
 - Charge loss due to E field shaping under deep p-well

TJ-Monopix1: Recap

- Possible improvements:
 - 1) Lateral E field enhancement \rightarrow **n-gap** or **extra deep p-well**
 - 2) Higher input signal \rightarrow thick Czochalski (Cz) substrate
- Compare **30 μm epitaxial chip with n-gap** and **300 μm Cz chip with additional deep p-well**
 - From simulation and measurements n-gap and additional deep p-well work equally well

TJ-Monopix1: Recap

- Testbeam results of 5 GeV electron beam at DESY
- Increase in efficiency after irradiation to 10¹⁵ neq/cm² to:
 - 87.1% for 30 µm epitaxial chip with n-gap
 - 98.6% for 300 µm Cz chip with deep p-well
- \rightarrow TJ-Monipix1 efficient if enough charge compared to threshold is created

30µm Epi: 87.1% @ TH=500e-

300µm Cz: 98.6% @ TH=490e-

UNIVERSITÄT BONN

TJ-Monopix2: Design

- Increase chip size (2x2 cm²) while reducing pixel pitch (33x33µm²)
- Improve FE to lower noise and threshold
- Extend ToT information from 6 to 7 bit
- 3 bit in-pixel threshold tuning
 - \rightarrow More in-pixel logic at smaller pixel size
- Command-based slow control from RD53B
- Four LVDS lines for I/O (additional 2 for debugging)
- 8b10b encoded data stream with hit and register data
 - \rightarrow Use BDAQ53 readout board developed for RD53
 - $\rightarrow\,$ Small and easy lab setup

TJ-Monopix2: First Measurements

- First lab tests checking ENC and threshold
- Threshold tuning works, dispersion improves
 - Expected MIP MPV ~1.5 2 ke⁻ at full depletion for ~30 μ m silicon
 - Not minimum achievable threshold

TJ-Monopix2: First Measurements

Successfully run source scan using **55Fe source**:

- Two FE flavors, right half has lower threshold
- $\rightarrow\,$ Chip works and detects radiation

Charge spectrum

UNIVERSITÄT BONN

TJ-Monopix2: Use Case

DMAPS candidate for Vertex detector upgrade of Belle II

- **5 layer pixel detector** with CMOS sensors: Layer 1-2: Self supporting all-silicon ladders Layer 3-5: Carbon-fiber support frame, ALICE like staves
- Low material budget (sensors thinned to ~50 μm)
- → TJ-Monopix2 chosen as prototype for development of new pixel sensor OBELIX for VTX proposal (also see upcoming talk by M. Babeluk)

Sensor	TJMonopix-2	LFMonopix-2	Belle II
Techno	TJ-180 nm	LF-150 nm	
Pixel pitch (µm²)	33x33	150x50	30 to 40
#Columns x #Rows	512x512	56x340	
Sensitive area (cm ²)	16.9x16.9	8.4x17	~30x20
Time Stamp (ns)	25	25	O(100)
Trigger latency (μs)	Global shutter	Continuous	5 ightarrow 10
Output charge (bits)	7	6	
Bandwidth (Mbits/s)	320		O(320)
Power (mW/cm ²)	O(200)		≤200
Hit rate (Mhz/cm ²)	>100	>100	≤150
TID kGy	1000		1000
Fluence (x 10 ¹³ n _{eq} .cm ⁻²)	100	100	10

LF-Monopix1: Recap

- First DMAPS (2016) with full in-pixel electronics and column drain readout
- TID hard tested up to 100 Mrad
- After irradiation to 1x10¹⁵ neq/cm²:
 - Uniform hit detection efficiency of ~99.4%
 - In-time efficiency ~96.6%
- But:
 - Column length half of final target
 - Large pixel pitch of 50x250 μm²
 - Observed cross-talk from one digital signal into collection node
 - \rightarrow LF-Monopix2

LF-Monopix2: Design

- Large collection electrode
- Increase chip size (2x1 cm²) while reducing pixel pitch (50x150 μm²)
- Total of 7 matrices with 3 CSA types
 - CSA1 proven design from LF-Monopix1
- 6 bit ToT information
- 4 bit in-pixel threshold DAC
 - Two different tuning circuit designs
- 40MHz / 160MHz CMOS or LVDS serial output

Matrix	Column	CSA	Feedback cap.	Discriminator	Logic
1-1	55 - 52	V1	$1.5\mathrm{fF}$	Bidirectional tuning	Falling
1-2	51 - 48	V1	$5\mathrm{fF}$	Bidirectional tuning	Falling
1-3	47 - 40	V1	$5\mathrm{fF}$	unidirectional tuning	Rising
1-4	39 - 16	V1	$5\mathrm{fF}$	unidirectional tuning	Falling
2	15 - 8	V2	$1.5\mathrm{fF}$	Bidirectional tuning	Falling
3	7 - 0	V3	$1.5\mathrm{fF}$	Bidirectional tuning	Falling

LF-Monopix2: I-V Curves

- Wafers successfully thinned down to 100 μm and backside processed
- For all tested chips breakdown voltage above 350 V
 - Significant improvement to LF-Monopix1
 - Fluctuations at low voltages due to limited current range of SMU

I-V-Curves of LF-Monopix1 and LF-Monopix2

LF-Monopix2: Threshold Tuning

- 4 bit in-pixel threshold DAC
- Threshold dispersion improves after tuning (here: 32 columns of CSA1)
 - Expected MIP MPV ~6 ke⁻ (100 μm silicon)
- Mean ENC (~100 e⁻) as expected

LF-Monopix2: Source Scan and Calibration

- Use ²⁴¹Am source with variable x-ray target ۲
- Chip matrices 1-3 & 1-4 (Col. 16-48) tuned to approx. 2ke- threshold
- Occupancy map and ToT distribution as expected .
 - Sensor fully illuminated •
 - ToT increases according to X-ray energy of targets ٠
- \rightarrow Preliminary LF-Monopix2 C_Inj ~ (2.90 \pm 0.25) fF

10

20

30

ToT Value

40

50

60

0.2

0.0 0

LF-Monopix2: Efficiency

- Preliminary results from first LF-Monopix2 testbeam at DESY (5 GeV electrons):
 - 100 μ m thick chip at 60V bias, unirradiated
 - Threshold ~2.2ke⁻
- ToT and residual distribution as expected
- Uniform hit detection efficiency >99%

Conclusion and Outlook

- Successfully modified TJ-Monopix1 sensor to counter efficiency loss after irradiation
- TJ-Monopix2 is working and used as prototype for Belle II VTX Upgrade
- LF-Monopix2 fully operational
 - Promising uniform hit detection efficiency >99% before irradiation after first testbeam
- Upcoming testbeam campaigns for both DMAPS
 - More detailed efficiency and irradiation studies to come

Thank You for Your Attention

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No. 675587-STREAM, 654168 (AIDA-2020) and 101004761 (AIDA-Innova)