

Radiation damage studies of new p-n junction SiC detectors

17th "Trento" Workshop on Advanced Silicon Radiation Detectors

SiCILIA collaboration

Silicon Carbide Detectors for Intense Luminosity Investigations and Applications

Participating INFN research units

INFN Laboratori Nazionali del Sud di Catania (LNS) INFN Sezione di Catania and "Gruppo collegato di Messina" (CT-ME) INFN Sezione di Milano Bicocca (MI-B) INFN Sezione di Milano (MI) INFN Sezione di Firenze (FI) INFN Sezione TIFPA (TN) INFN Sezione Pisa (PI)

institutions and Companies

CNR-IMM – Catania CNR-INO – Pisa PSI – Switzerland ENEA- Frascati Fondazione Bruno Kessler (**FBK**) – Trento ST Microelectronics – Catania LPE – Catania (**LPE**)

Why Silicon Carbide for radiation detection?

Property	Si	Diamond	Diamond	4H SiC
Material	MCz, FZ, epi	Polycrystal	single crystal	epitaxial
E _g [eV]	1.12	5.5	5.5	3.3
E _{breakdown} [V/cm]	3·10 ⁵	10 ⁷	10 ⁷	2.2·10 ⁶ —
μ _e [cm ² /Vs]	1450	1800	>1800	800
$\mu_h [cm^2/Vs]$	450	1200	>1200	115
v _{sat} [cm/s]	$0.8 \cdot 10^7$	2.2·10 ⁷	2.2·10 ⁷	2·10 ⁷
Z	14	6	6	14/6
ε _r	11.9	5.7	5.7	9.7
e-h energy [eV]	3.6	13	13	7.6
Density [g/cm3]	2.33	3.515	3.515	3.22
Displacem. [eV]	13-20	43	43	25
e-h/µm for mips	~80	36	36	55

Applications

- UV Soft-X detection
- Charged Particle <u>detection</u> and <u>identification</u>
- Neutron detection

- Wide band-gap (3.3eV)
 ⇒ Visible blind
- \Rightarrow Low Leakage current
 - High Breakdown
- ⇒ Advantage for Radiations hardness
 - **Different e-h mobility**
 - Charge Identification pulse shape analysis
 - Fast devices
 - ⇒ Timing applications
- Higher displacement threshold
- $\Rightarrow \frac{\text{Radiation hardness}}{\text{more than Silicon}}$
- Signal

SiC

- ⇒ Less charge than Si, SiC≈Si/2
- \Rightarrow A problem for MIP!
- \Rightarrow No problem in all other case

S. Tudisco, TREDI 2022

S. Tudisco et al. SENSORS Vol. 18 (2018) 2289

New p-n junction SiC detectors

Geometry of the final PID wall

40 columns

S. Tudisco et al. SENSORS Vol. 18 (2018) 2289

New beam test are in preparation

G. Petringa et al 2020 JINST 15 C05023

New p-n junction SiC detectors

Radiation Hardness

e 5 MeV SiC 10μm 5x5 mm²

SiCILIA results

Electrons Beam Monitor

LINAC @ UniMe

Electrons irradiation

5 MeV

1-200 mA

- Energy
- Current
- Rep. Rate 1-300 Hz
- Pulse duration 3 µsec

SiCILIA results X-Ray detections

Transparency Beam Position Monitor (XBPM) + Extreme radiation hardness 1,2,3,4,5 Fast response

Synchrotrons radiation

PAUL SCHERRER INSTITUT

BEAM ON

BEAM OFF

40

DIAMOND

30

X-ray beam 10x10 µm², 5E10 ph/sec @ 12.4keV

20

Dose (GGy)

10

SiCILIA Collaboration

Salvatore Tudisco^{1,} Francesco La Via^{1,2} Clementina Agodi¹ Carmen Altana¹ Giacomo Borghi³ Maurizio Boscardin³ Giancarlo Bussolino⁹ Lucia Calcagno⁴ Massimo Camarda⁵ Francesco Cappuzzello^{1,4} Diana Carbone¹ Salvatore Cascino⁶ Giovanni Casini⁷ Manuela Cavallaro¹ Caterina Ciampi^{7,13} Giuseppe Cirrone¹ Giacomo Cuttone¹ Alberto Fazzi⁸ Dario Giove⁸ Giuseppe Gorini⁷ Luca Labate⁹ Gaetano Lanzalone^{1,10}

Grazia Litrico¹¹ Giuseppe Longo⁶ Domenico Lo Presti⁴ Marco Mauceri¹¹ Roberto Modica⁶, Maurizio Moschetti⁶ Annamaria Muoio¹ Franco Musumeci^{1,4} Gabriele Pasquali^{7,13} Giada Petringa^{1,4} Nicolò Piluso⁶ Giacomo Poggi^{7,13} Stefania Privitera² Sebastiana Puglia¹ Valeria Puglisi⁶ Marica Rebai⁷ Sabina Ronchin³ Antonello Santangelo⁶ Andrea Stefanini^{7,13} Antonio Trifirò¹² Massimo Zimbone²

Thanks for your attention !

- ¹ INFN-LNS
- ² IMM-CNR, VIII Strada, 5, 95121 Catania, Italy
- ³ TIFPA-INFN
- ⁴ INFN-Catania and Phys. Depart. of Catania
- ⁵ Paul Scherrer Institute, Switzerland
- ⁶ STMicroelectronics
- ⁷ INFN-Firenze
- ⁸ INFN-Milano and Dept. of Energy, Politec. Milano
- ⁷ INFN-Milano Bicocca and Phys. Depart. of Bicocca University
- ⁹ INO-CNR, via G. Moruzzi 1, 56124 Pisa, Italy
- ¹⁰ UNI-Kore, Enna University
- ¹¹ LPE, growing tewcnology Catania
- ¹² MIFT Depart. of Messina Unversity
- ¹³Phys. Depart. of Firenze University