

Defect spectroscopy studies on irradiated LGADs

<u>Anja Himmerlich</u>, Nuria Castello-Mor, Esteban Curras Rivera, Yana Gurimskaya, Vendula Maulerova-Subert, Michael Moll *CERN*, Switzerland

Ioana Pintilie NIMP, Bucharest-Magurele, Romania

Chuan Liao, Eckhart Fretwurst, Joern Schwandt University Hamburg, Germany

Leonid Makarenko Belarusian State University, Minsk, Belarus

03.03.2022 anja.himmerlich@cern.ch

17th Trento Workshop

CERN

Samples

p-type Si diodes (n⁺p):

Forschungsinstitut für Mikrosensorik GmbH

50 µm

p-type Si of different resistivity: 10 Ωcm 50 Ωcm 250 Ωcm 1kΩcm

Material:

Standard EPI diodes area = $(2.632 \times 2.632) \text{ mm}^2$ nominal active thickness = $50 \mu \text{m}$ guard rings passivation with openings for conection; on back and front side openings for light injection

Neutron irradiation up to 1E+14 n/cm²

CNM & HPK LGADs & PiNs	Neutron irradiated	1	
	fluence (n _{eq} /cm²)	U _{depl} (V)	
LGAD - HPK W36 S3	1E+13	~ 50	
Pin – HPK W42 S4	1E+13	~ 5 🗾	НРК
LGAD – CNM W2	1E+14	~ 30	
LGAD – CNM W3	1E+14	~ 30	
PiN – CNM W2	1E+14	~ 2	

1E+15

CNM LGADs: SOI –wafer (run11486) – (351 μ m thick): B-doped active p-type layer: resistivity > 5000 Ω cm, 50 μ m oxide layer (1 μ m) p-type support-wafer (B-doped, 300 μ m, low resistivity) area = 0.09 cm²

HPK LGADs:

LGAD – CNM W2

B-doped active p-type layer: 50 μ m support wafer thickness: 300 μ m area = (1.3 x 1.3) mm²

Voltage, V

DLTS

DLTS: Deep Level Transient Spectroscopy

(1) Junction under reverse bias @ different temperatures \rightarrow defect states unoccupied

(2) Injection pulse (electrical or optical) \rightarrow injection of minority and/or majority carriers \rightarrow occupation of defect levels

(3) Junction under reverse bias \rightarrow charge carriers thermally emitted \rightarrow change in capacitance (capacitance transients)

DLTS limited to defect concentrations $N_{t} \approx 0.1 - 0.3 * N_{doping}$

Frequency dependence

 $LGAD - HPK (1E+13 n_{eq}/cm^2)$

after irradiation: capacitance drops at higher measurement frequencies

irradiated

RD50 17th Trento Workshop

Frequency dependence

 $LGAD - CNM (1E+14 n_{eq}/cm^2)$

Frequency dependence

$LGAD - CNM (1E+14 n_{eq}/cm^2)$

TSC studies

TSC: Thermally Stimulated Current

- (1) Cooling down to T_{fill} : junction under reverse bias \rightarrow defect states free of charge carriers
- (2) Filling @ T_{fill} :

Electrical (or optical) Injection pulse \rightarrow injection of minority and/or majority carriers

 \rightarrow occupation of defect levels in dependency of their individual capture cross-section for electrons and holes at T_{fill}

- (3) Heating at a constant heating rate: junction under reverse bias & temperature raised
 - → monitoring the discharging current due to thermal emission from defect levels

Defect concentration calculation using the integrated peak area:

$$n_{t,0} = 2\frac{Q_t}{q_0 A W}$$

17th Trento Workshop

Defect studies on neutron irradiated p-type EPI diodes

 $IR = \frac{defect \ concentration}{fluence}$

EPI-diodes:

- Ingher indence: delect ratio changes (e.g. more cluster related low resistivity material: BiOi defect dominates
- Iow resistivity material: BiOi defect dominates
- BiOi concentration increases with fluence
- □ IR dependence on fluence and N_{eff} (increase if $\phi < 1E+14 \text{ n}_{eq}/\text{cm}^2 \& \text{N}_{eff} < 2E+14 \text{ cm}^{-3}$)

For details of the parametrization see:

- Moll, PoS 2019 VERTEX
- Ferrero et al. NIMA 919 (2019) 16-26

TSC studies on neutron irradiated PiN diodes

22 20 **CNM-PiN** 18 1E+14neq/cm² 16 UR = -100V 14 -12 H(40) -I(pA)* 10 8 CiOi 6 120 VOi 4. Tfill = 75K ! CiCs 2 EPI(1 kΩcm) 0 -7.8E+13n/cm² cluster defects UR = -100V -2 -**BiOi** -4 150 *spectra are shifted 50 100 200 in y-direction T(K)

Comparison PiN diode and EPI pad diode (PiN-diode: higher fluence!!)

□ Comparable defects formed

TSC studies on neutron irradiated PiN diodes

Comparison PiN diode and EPI pad diode (PiN-diode: higher fluence!!)

□ HPK PiN lower fluence: significantly less defects detected (defects in the T-range of 125K - 200K)

17th Trento Workshop

RD5C

CERN

□ identification of radiation induced defects possible

Charge carrier amplification:

❑ background leakage current starts to increase already at T < 150K:
⇒ defect levels in this range not detectable

current amplification in the LGAD (even at low T):
... in dependency of the gain-layer deactivation due to radiation

⇒ exact determination of the defects concentrations not possible

II BiOi-IR ~ 1.8 cm⁻¹ (lower fluence) BiOi-IR ~ 0.2 cm⁻¹ (higher fluence)

□ signal mainly from the bulk (?)

TSC studies on neutron irradiated LGADs (depletion of the full device)

RD50 17th Trento Workshop

CERN

TSC studies on neutron irradiated LGADs (variation of the reverse bias)

RD50 17th Trento Workshop (

Defect current signal very high

CERN

HPK-LGAD: 1E+13 neq/cm²

U_{GL-depl.} : -50V

defect induced TSC signal decreases

... Defect current signal (90.8K) @ UR=-50V about 1pA \Rightarrow @ -80V signal about 1.1E+6 higher

TSC studies on neutron irradiated LGADs (variation of the reverse bias)

RD50 17th Trento Workshop

HPK LGAD

CERN

HPK-LGAD: 1E+13 neq/cm²

U_{GL-depl.} : -50V

... Defect current signal (90.8K) @ UR=-50V about 1pA \Rightarrow @ -80V signal about 1.1E+6 higher

17th Trento Workshop CERN RD50

U_{GL-depl.} : -30V

lowering the reverse bias:

03.03.2022 anja.himmerlich@cern.ch

TSC studies on neutron irradiated LGADs (internal fields)

RD50 17th Trento Workshop

TSC measurement cycle:

 $[\]frac{\text{CNM} - 1\text{E} + 14 \text{ neq/cm}^2}{(\text{U}_{\text{GL-depl-}} \sim -30\text{V})}$

TSC studies on neutron irradiated LGADs (internal fields)

RD50 17th Trento Workshop

TSC measurement cycle:

"Changes in the TSC current sign due to **internal residual E-fields** induced by high defect concentrations after high neutron Irradiation" \Rightarrow M. Bruzzi et al. NIMA 2010 & PoS 2009

internal electrical polarization fields here observed in irrad. LGADs: induce an inverse current signal

Summary

- DLTS & TSC characterization of HPK & CNM LGADs & PiNs irradiated with neutrons (1E+13 1E+15 neq/cm²)
- **DLTS** studies of LGADs restricted by the capacitance drop observed after irradiation
- **TSC:** Identification of irradiation induces defects possible

 \Rightarrow higher irradiation: more defects & less gain

 \Rightarrow assignment of defect levels to the gain- or bulk-area is challenging

! due to the gain layer:

pronounced charge multiplication effect & leakage current amplification in the LGADs

- effect decreases with higher radiation (GL destruction)
- restrict defect determination & defect concentration determinations
- gain effects observable also at very low temperatures
- Defect induced internal polarization fields that influence the sign of the TSC current signal

Outlook

... using defect parameters from DLTS & TSC to simulate TSC spectra + comparison of the PiN & LGAD data

... ongoing identification of irradiation induced defects that degradate the device performance

... investigate highly irradiated, highly B-doped (1E+17 cm⁻³) Si pad diodes that mimic the LGAD gain layer

