

Hybrid Detector for Microdosimetry (HDM)

<u>E. Pierobon</u>, M. Missiaggia, M. Castelluzzo, F. Tommasino, L. Ricci, E. Scifoni, V. Monaco, M. Boscardin, C. La Tessa

Trento Institute for Fundamental Physics and Applications

Radiotherapy fundamentals

- Inactivate the tumour by depositing energy in the body
- Minimize the dose to the healthy tissue
- Treatment planning and delivery is based on the Treatment Planning System (TPS)

Radiotherapy fundamentals

- TPS requires physical and biological quantities to describe the radiation interaction and effects
- The key ingredient is the dose

$$D = \frac{E}{m}$$

- It depends on
 - Energy
 - Particle species

Kaiser, Adeel et. al 10.3791/58372.

Radiation quality

From Physics to Biology

- Radiation damage occurs at cellular level
- The most sensitive target to radiation is DNA
- Describing the energy deposition in a scale comparable to the cell nucleus improves the biological damage assessment

Microdosimetry

Two detection strategies:

Micro-sized

Better spatial resolution:

dimensions of few micrometers

 Micro-equivalent in terms of energy deposition

Gas detectors

Tissue-equivalent:

 energy deposition is the same as micrometric tissue

Detector (HDM) MCL

Mean Chord Length: most probable particle track length in isotropic and uniform radiation field

For a spherical geometry [our TEPC (*Tissue Equivalent Proportional Counter*) detector]

 $MCL = \frac{2}{2}d$

What if the real track length is used?

Need of a tracker

Detector (HDM): LGADs

Two LGAD geometries produced at FBK

34 strips per sensor

lgad

71 strips per sensor

Units in mm

- ο pitch 360 μm
- o better fill factor
- o less channels to read

- o pitch 180 μm
- better spatial resolution

HDM: tracking

Missiaggia, M., Pierobon, E., et al. "Machine learning techniques for therapeutic energies particle tracking in microdosimetry." To be submitted to Physics in Medicine & Biology (2022)

Low Tracking efficiency:

Real CL 1e+00 1e+01 Lineal energy [keV u m

10

OUPUT:

microdosimetric spectra

TEPC readout

Information on the energy deposition

TEPC readout

TEPC

First experimental data acquired with new readout at the 25 MeV proton cyclotron CYRCé (Strasbourg, IPHC)

Whole temporal series is acquired

- + No information lost in MCA
- Custom operation in real time
- All experiment data is safely stored
- High data flow to manage (40Mbps)
- ± Data analysis to implement

TEPC readout

TEPC

Results are promising especially to deconvolve pile-up

Data analysis must recognize pile-up condition

Another application of machine learning to extract all the information from the signals

LGADS readout

LGAD

ESA_ABACUS board

ABACUS chips

Each chip read a maximum of 24 LGADs

LGADS readout

LGAD

Direct interface with ESA_ABACUS

Currently under debugging

Digital signal coming from ESA_ABACUS is processed thanks to FPGA Xilinx model zc702

4 ESA_ABACUS boards 71 strips of LGADs x 4 layers = 284 channel to read \implies Mounting 3 ABACUS chip \implies 4 zc702 FPGAs each

HDM: to summarise

- This work is part of the MICROBE_IT project funded by INFN (CSN V)
- Detector feasibility study published
 - Missiaggia, M.; Pierobon, E.; et al. (2021). A novel hybrid microdosimeter for radiation field characterization based on TEPC detector and LGADs tracker: a feasibility study. Frontiers in physics .
- HDM is capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - ✓ Provide a superior radiation field characterization

HDM improved radiation quality description results in a more accurate dose calculation in TPS.

HDM: to summarise

FPGA new readout testing

TEPC

Preliminary test at GSI with mimosa

ABACUS chip and ESA_ABACUS board debugging

Develop FPGA firmware to read ESA_ABACUS

LGAD

Communication between TEPC and LGADs readout

Data analysis

progres

//TODC

Thank you for your aftention

Backup slides

HDM: preliminary test

TEPC

Preliminary test with an existing tracker (CMOS pixel) available at GSI

BNL, December 2010, Marc Winter

Experimental setup to be discussed in these days

GSI facility. 56-Fe beam?

Other ions?

FPGA

Zynq FPGA architecture

ARM processor

Programmable Logic

THE HYBRID DETECTOR HDM: TEPC readout

TEPC

TEPC readout using Eclypse Z7: Zynq-7000 (FPGA)

Equipped with 4 ADCs

THE HYBRID DETECTOR HDM: TEPC readout

TEPC

Energy deposition is the same:

Hybrid (HDM)

Two readout systems to implement

Energy deposited

Tracking