

Study of Irradiated CNM 3D Sensors

Susan Dittmer on behalf of the CMS Tracker Group

3D Sensors

- HL-LHC necessitates upgrade of ATLAS, CMS pixel detectors
 - High granularity, rad hard, coverage to | $\eta | < 4$
 - Fluence of ~3.5E16 n_{eq}/cm² expected in CMS inner layer
- 3D sensors more robust to radiation
 - Decouple sensor thickness and charge drift distance
 - Lower power dissipation to reduce thermal load
- ATLAS to use 3D sensors in inner layer of pixel detector; CMS to decide (mid-April)

Fermilab Irradiation Test Area

- Irradiation Test Area (ITA) operating at Fermilab since Jan. 2020
- 400 MeV Linac protons
- Nominal intensity 2.7E15 protons / hour
- Gaussian beamspot, ~1cm nominal width

Fermilab

- CMS HL-LHC pixel sensors pilot users of Fermilab ITA
- 3 irradiation campaigns, each targeting 2E16 n_{eq}/cm²
 - February/April, June, and November 2021
 - Issues with beam targeting, resulting in lower fluences and/or fluence gradients for some sensors
- Mixture of planar and 3D sensors from different foundries including Hamamatsu, CNM, and FBK
 - CNM 3D focus of this talk

Sensors of Interest

- Focus on measurements of sensors with different fluences and pixel cell geometries
 - 50x50 and 25x100 µm pixel cell
 - 1.3E16, 1.4E16, and >2E16 (exact value TBD) n_{eq}/cm² fluence
- This talk shows results for 50x50 and 25x100 μm sensors at 1.3E16 $n_{eq}/$ cm^2 (analysis of other sensors ongoing)

RD53A Readout Chip

- RD53A: common ATLAS+CMS prototype readout chip
 - 65 nm CMOS
 - Three analog front ends

3 - C 3 - C	
Linear FE	Differential FE
Chosen by CMS, used for testing	
136 columns (17 core columns)	136 columns (17 core columns)
128 - 263 	◀──── 264 - 399 ──►
	<section-header><section-header><section-header><section-header><text><text></text></text></section-header></section-header></section-header></section-header>

S. Dittmer

Fermilab Testbeam Facility

Dry air lines

Thanks to INFN Milano for coldbox!

Beam details:

120 GeV protons4.2s spill with ~80k protons every 60s53MHz beam frequency

S. Dittmer

Sensor IV Characterization

Bias Voltage (V) at Sensor

Bias Voltage (V) at Supply

Sensor Tuning

- Threshold adjustment
 - Target ~1% noisy pixels (~1600e-)
 - Noisy pixels = noise rate 1E-05
- Mask remaining noisy pixels
- Extract charge calibration (digitized value vs injected charge) to use in cluster reconstruction

- Sensor calibration and readout performed using <u>FC7 DAQ</u>
 - Interfaced with testbeam <u>OTSDAQ</u> for data synchronization
- Track reconstruction and alignment performed with <u>Monicelli</u>
 - Kalman filter tracks
 - Pixel geometry, charge calibration provided as inputs

Hit Efficiency vs Bias

- Max efficiency >99%
 - For Vbias > 80V

Cluster Charge vs Bias

- Fluence 1.3E16 n_{eq}/cm², temperature -20C, incidence angle 10°, threshold 1600 e-, 25x100 µm pixels
- Charge increases with bias up to 100V —> not yet fully depleted

S. Dittmer

Residuals vs Bias

- Fluence 1.3E16 n_{eq}/cm^2
- Temperature -30C
- 50x50 µm pixel cell, normal incidence
- Threshold 2100 e-
- Residuals at full efficiency: 16 μm
 X, 19 μm Y
 - Consistent with pixel geometry
 - Telescope resolution ~5 µm

S. Dittmer

Summary

- 3D sensors potentially improve rad hardness of CMS HL-LHC tracker inner layer
 - Sensor decision to be made in ~April
- Irradiation program at Fermilab ITA supports CMS HL-LHC sensor testing
 - Paired with testing program at Fermilab Test Beam Facility
- Large set of data on irradiated CNM 3D sensors accumulated in past year
 - Testbeam measurements at various angles and bias voltages, plus lab bench testing
 - Analysis of full dataset ongoing

S. Dittmer

US Testbeam Group

Corrinne Mills, Titas Roy, Joaquin Siado Castaneda, Joey Reichert, Jason Thieman, Scarlet Norberg, Atanu Pathak, Christine McLean, Susan Dittmer, Sofia Lasky-Headrick, Hugo Becerril, Sahithi Rudrabhatla, Samuel Bright-Thonney, Liam Foster, Edgar Albelo Ortiz, Mauricio Matta Seclen, Jahid Hossein, Jesse Harris, Hsin-Wei Hsia, Gail Hanson, Jieun Yoo, Abbas Hassani, John Cumalat, Stefan Spanier, Matthew Jones, Julia Thom-Levy, Stephen Wagner, Karl Ecklund

FC7, telescope, cold box, & essential advice: Lorenzo Uplegger, Luigi Moroni, Mauro Dinardo, Davide Zuolo, Ioannis Kazas

ITA & FTBF: Mandy Kiburg, Evan Niner, Jason St. John, Petra Merkel, Erik Ramberg, with support from the particle physics (PPD) and accelerator (AD) divisions

BACKUP