

Development of a backside biased HV-CMOS sensor in a 150 nm process node for particle detection

Nissar Karim, Matthew Franks, Jan Hammerich, Samuel Powell, Eva Vilella Figueras, Benjamin Wade, Chenfan Zhang

nissar.karim@liverpool.ac.uk

2nd March 2022

Existing HV-CMOS sensor radiation performance achieved so far compared to other experiments:

	FCC-hh	HL-LHC	HV-CMOS performance
Radiation tolerance	10 ¹⁶ - 8x10 ¹⁷ n _{eq} /cm ²	10 ¹⁶ n _{eq} /cm ²	2 × 10 ¹⁵ n _{eq} /cm ²
Pixel size	$25 x 50 \mu m^2$	$50 \times 50 \mu m^2$	$50 \times 50 \mu m^2$

Design and measurements I am going to present:

- 1. Test structures used to measure IV for high radiation tolerance.
- 2. Circular transistors to mitigate leakage current and hence to obtain higher radiation tolerance.

- (1) Topside Biasing
- Standard substrate biasing in HV-CMOS sensors.

(2) Backside biasing with floating contact on top

Improved radiation tlerance upto 10¹⁵ n_{en}.cm⁻² on thin substrate . (doi:10.1016/j.nima.2018.07.022)

(3) Backside biased pixel with no topside contacts

SELECTED CONFIGURATIO

Simulated I-V curves using TCAD (By M. Franks)

Chip ring is a current terminating structure.

From chip edge and inwards:

- Current Terminating Ring (CTR) Collects the major part of the cut edge generated current (I_LEAK ↑)
- Clean-up Ring (CR) Collected I_LEAK is only a small fraction of the edge current and bulk current Decouples high leakage current generated at the detector cut edge from sensing pixels
- Current terminating ring and clean-up ring are biased to the same potential
- In our case the current terminating ring works, as well, as a seal ring to protect the design from the mechanical stress and dirt generated during dicing

LIVERP

Passive Matrices

Matrix with Active linear transistors;60µmx60 µm pixels; and 54 20 rows columns

Active Matrix with circular transistors ; 60µmx60µm pixels; 20 rows and 54 columns

Singular Circular Transistors

- Two wafers with $1.9kO\cdot cm$ resistivity.
- Samples are thinned to 280 μm
- Wafer 1 backside processed using plasma immersion ion implantation with laser annealing and
- Wafer 2 backside processed using beamline implantation with rapid thermal annealing

Nissar Karim

Regulator

Connection to measure IV

Measuring IV using probe station needle

17th Trento Workshop on Advanced Silicon Radiation Detectors, 2022

Nissar Karim

-500

-600

20000

20050

20100

20150

z [um]

20250

20200

-200

- Leakage current increases as expected from silicon sensors It is dominated by bulk current.
- We don't see leakage current > 0, but this is still there most likely.

Breakdown Voltage, V_{BD}

Annealing Type	Fluence (n _{eq} /cm²)	V_BD (When current reached compliance)	V_BD (k Method)	V_BD (ILD Method)
Plasma +Laser	0	630.00	620.03	620.03
	1.00E+13	510.00	500.00	500.00
	3.00E+13	490.00	470.05	470.05
	1.00E+14	490.00	480.05	480.05
	1.00E+15	420.00	410.03	410.03
	1.00E+16	360.02	340.02	340.02

Two parameters calculated in order to determine breakdown voltage

UN

VERSIT

LIVERPC

Y

O F

Annealing Type	Fluence (n _{eq} /cm²)	V_BD (When current reached compliance)	V_BD (k Method)	V_BD (ILD Method)
Beamline +RTA	0	670.00	670.00	670.00
	1.00E+13	510.00	500.04	500.04
	3.00E+13	550.00	540.00	540.00
	1.00E+14	590.00	580.00	580.00
	1.00E+15	490.00	480.00	480.00
	1.00E+16	390.04	380.04	380.04

Nissar Karim

------17th Trento Workshop on Advanced Silicon Radiation Detectors, 2022 ---

11

LIVERSITY OF

UKRI-MPW0 ELT Teststructure

Nissar Karim

ELT

Conection for the Test

- Designed & measured ELT and Linear transistors with two different dimensions, two different implantation processes.
- The unirradiated measured results are in close proximity with the simulated values.
- Next task-TID irradiation.

Transfer Curve for ELT and Lin. Transistors

Beamline Implantation+ Rapid Thermal Annealing Plasma Immersion, Ion Immersion and Laser Annealing

Beamline Implantation+ Rapid Thermal Annealing Plasma Immersion, Ion Immersion and Laser Annealing

Note: These results are before irradition

Nissar Karim

Each pixel has sensing diode and read-out-electronics. Read-out-electronics contains a charge sensing amplifier (CSA), source-follower, HP filter and a comparator.

Nissar Karim

ELT based Pixel Schematic in UKRI-MPW0

DAQ based on Caribou for UKRI-MPW0 (by Sam Powel)

Nissar Karim

Bonded Chip

Measured SFOUT from 90 Sr source at V_{bias}=450V(Single Shot)

- For using floating p-stop, TCAD simulations show that this still causes regions of high electric field to form (high enough for avalanche multiplication and therefore breakdown to occur) near biased n-type wells (e.g. pixels, guard ring NWELL...) which we think limits the maximum achievable breakdown voltage.
- Therefore, We would now possibly like to look into p-spray which is not available from the foundry we use at the moment.

Main Achievements:

- Proof of concept HV-CMOS sensor with a very high breakdown voltage has been shown.
- Matrix reacts to ⁹⁰Sr source in the case of ELT based pixels.

Future Work:

- Examining the source of positive leakage in test structure I-V measurements.
- Edge-TCT measurement is ongoing.
- Conducting TID irradiation and post-irradiation measurements on the ELT teststructures.
- Measuring the other signals (COMPOUT, HITMAP, ToT) of the ELT based active matrix. Both at unirradiated and post-irradiated stages.

Thank You

LIVERPOO

Backup Slide

Backside processed using plasma immersion ion implantation with laser annealing

Backside processed using beamline implantation with rapid thermal annealing

Nissar Karim