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Introduction

High resistivity (HR) GaAs:Cr has become an interesting material
for X- and gamma- ray imaging detectors.

But, it can be also used for particle tracking:
I higher electron mobility -> faster device;
I higher stopping power -> more particle species can be separated in mixed

radiation �elds.
The GaAs:Cr charge carrier transport properties were studied
experimentally (by means of 125 MeV protons irradiation):

I the parameters of Ruch model [1] for electrons drift velocity were founded

for GaAs:Cr;
I based on the simulation and testbeam data the mobility µh and lifetime τh
of holes were estimated;

I charge carrier space spread was measured as a function of interaction depth;
I obtained parameters were used to simulate the GaAs:Cr-Timepix3 response

to gammas of 10 � 60 keV.
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Why do we need proper knowledge of transport
properties of charge carriers?

In pixel detectors the small pixel e�ect plays the signi�cant role.

The dependence of Charge Collection E�ciency (CCE) on interaction depth is almost �at,
electrons give main contribution, but in close to pixel region the contribution of holes is
signi�cant -> for proper simulation of events which occur close to pixels it is important to
know lifetime and mobility of both charge carriers � electrons e− and holes h+.

Transport properties of electrons in HR GaAs:Cr were measured and recently reported multiple
times [2, 3], but for holes such information was not found updated.
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Figure: CCE versus interaction depth z for 500 µm thick
GaAs:Cr-Timepix3 detector. z = 0 µm are pixels plane.
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Figure: Simulated energy spectrum of 10 ke− charge
placed at 50 µm from pixel.
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Detector based on Timepix3 chip and HR GaAs:Cr sensor

Timepix3:

Matrix of 256x256 pixels with pitch 55 µm.

Simultaneous measurements of deposited

energy (ToT) and time of interaction (ToA

with binning of 1.5625 ns) in each pixel.

Data driven readout.

Maximum hit rate: 40 Mhits/cm2/s.

High resistivity GaAs:Cr:

Technology of chromium compensation is

developed by Tomsk State University.

ρ ∼ 109 Ohm·cm.

e− are main charge carriers: τe ∈ [10, 100] ns.

Transport properties of h+ are very pure.

Sensor thickness 500 µm.

Figure: HR GaAs:Cr-Timepix3 detector with
readout interface Katherine.
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Measurements with charge particles at grazing angles

Protons of 125 MeV and pions of 120 GeV/c at impact angles of 30 � 75 deg.

Timepix3 chip operated in hole/electron collection mode.

Electron collection mode: verify Ruch et al. electron drift velocity model.

Hole collection mode: estimate lifetime and mobility of holes.
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Figure: Typical protons tracks in electron collection
mode at 75 deg.
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Figure: Typical protons tracks in hole collection mode at
75 deg.
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Modes of detector operation
S
im

p
li
�
e
d
sc
h
e
m
a
s
o
f
p
re
a
m
p
li
�
e
r
o
u
tp
u
t

Figure: Electron collection mode

Figure: Hole collection mode

Negative bias applied to common
electrode (electrons drift towards
pixels), discriminator polarity "-".

Typical "GaAs"/"CdTe" mode of
operation.

Positive bias applied to common
electrode (holes drift towards
pixels), discriminator polarity "+".

Typical "Si" mode of operation.
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Tracks length comparison in two collection modes

Proton tracks in hole collection mode are shorter than in electron collection

mode for all impact angles.
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Simulation with Allpix2 framework

Several modules of Allpix2 framework were
modi�ed in order to add:

I GaAs as physical material;

I drift velocity models and charge carrier lifetime.

TransientPropagation module was used in

order to obtain the evolution in time of

induced charge on pixel electrodes according

to Shokley-Ramo theorem.

Constant electric �eld model was chosen as

appropriate for GaAs:Cr [2].

ToA information was calculated as time when

induced on pixel charge crossed the threshold

(6= drift time) + smeared according to

σtimewalk [5].
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Visualization of electrons drifted to pixels
from 125 MeV proton track path.

Visualization of holes drifted to pixels
from 125 MeV proton track path.
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Drift time(z) & CCE(z) in electron collection mode

Used mobility and lifetime values: µe = 3227 cm2/V/s and τe = 30 ns give

typical many times reported value of µe × τe ∼ 10−4 cm2/V.

Drift time is ∼3 ns for 500 µm thick detector with Ubias=-300 V, what is

already good enough to fully utilize the time resolution of Timepix3.
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Figure: Drift time(z) for electrons.
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Figure: CCE(z) for electrons.
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Drift time(z) in hole collection mode

Iterative simulation with di�erent values of µh and τh with step on mobility of

10 cm2/V/s and lifetime � 0.5 ns.

The best agreement is achieved for µh = 320 ± 10 cm2/V/s and

τh = 4.5 ± 0.5 ns.
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Figure: Fixed τh = 4.5 ns, various mobilities.
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Figure: Fixed µh = 320 cm2/V/s, various lifetimes.
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HR GaAs:Cr charge transport models

Electrons drift velocity dependence on electric

�eld � from Ruch et al.:

if E < E0: V
e
drift = µe · E.

if E ≥ E0: V
e
drift =

µe · E/
√

1 + (E − E0)2/E2
c .

Saturation electric �eld is E0 = 3517 V/cm.

Veri�ed with previous measurements [4].

For holes:

Simple approach: Vhdrift = µh · E.

Estimation of µh and τh based on comparison

of data and simulation.
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Figure: Dependence of electrons drift velocity
on electric �eld.
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Charge carrier space spread � charge sharing

Main in�uencing factors: initial charge cloud size, di�usion, repulsion, weighting

�eld, capacitive coupling.

All these contributions can be measured simultaneously with energetic protons

impacted to the detector at grazing angle.

p 125 MeV
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Methodology: charge cloud σ dependence on depth

Protons of 125 MeV at 75 deg. to the detector normal.
Select only clusters at small angle (1-2 deg.) to rows.
Fit by line to obtain sub-pixel position of the track -> extract sub-pixel ysubpixel position for
each x position of track.
Calculate depth z coordinate of the track from geometry.
Fit by Gaus + Landau the energy spectrum for each (z, ∆y = y - ysubpixel) position.
Create pixel "sensitivity map" MPV(∆y) for each depth position, �t by function below and
extract σ.
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Pixel sensitivity maps for di�erent depths

Fit MPV(∆y) dependence for each depth bin by function [6]:

MPV (∆y) = MPV0 ∗ (1 + Erf (
27.5− y√

2σ
))

Flatter top � lower charge sharing.
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Figure: Interaction close to the common electrode:
σ = ∼16 µm.
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Figure: Interaction in the middle of the sensor:
σ = ∼5 µm.
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Preliminary results

The obtained dependence can be used for quick detector response simulation.

More experimental data is needed to obtain dependence σ (z, Ubias): bias

voltage scan.
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Simulation of the response to gammas

Obtained charge transport parameters were

applied in the simulation of the detector

response to γ-s.

Standard geometrical model of the Timepix

detector in Allpix2 was used.

It includes PCB, bump-bonds, chip and sensor

covered by Al.

Surrounding safety box was not taken into

account (scattering).

Experimental dataset: 241Am source with

59.6 keV γ-line was placed in front of the

detector + several X-ray �uorescence lines

were used.
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Simulated/measured energy spectra

GP - GenericPropagation [no Shokley-Ramo theorem, arti�cial charge smearing]

TP - TransientPropagation [Shokley-Ramo theorem, proper simulation of

Timepix3 electronics]

Relative energy resolution σ/E ∼ 6 % @ 60 keV.
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Figure: 8 keV photons spectra.
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Figure: of 241Am source spectra.
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Simulated spectra of 10÷60 keV gammas

The energy resolution of simulated spectra is very close to experimental ones,

especially in case of Transient current simulation.
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Figure: Simulated spectra.

10 20 30 40 50 60

E [keV]

4

6

8

10

12

14

16

18

20

22/E
 [%

]
σ

R
el

at
iv

e 
en

er
gy

 r
es

ol
ut

io
n 

Experiment

Simulation GP

Simulation TP

Figure: Relative energy resolution versus energy.
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Conclusions

Timepix3 is a useful tool for sensors charge transport study.

Charge transport models for HR GaAs:Cr were veri�ed with
experimental data and the reasonable agreement was
demonstrated.

Mobility and lifetime of holes in HR GaAs:Cr were estimated using
the simulation and experimental data.

The spread of charge cloud was measured in dependence on
interaction depth.
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Weighting potential for central and non-central pixels
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