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Defect characterization
(Ioana Pintilie, NIMP Bucharest)

Characterization of microscopic properties of 
standard-, defect engineered and new 
materials
pre- and post- irradiation

● DLTS, TSC, ….
● SIMS, SR, …
● NIEL (calculations)
● Cluster and point defects
● Boron related defects
● SiC/GaN based detectors

Detector 
characterization
(Eckhart Fretwurst, Hamburg University)

● Characterization of test structures 
(IV, CV, CCE, TCT,.)

● Development and testing of defect 
engineered devices

● EPI, MCZ and other materials
● NIEL (experimental)
● Device modeling
● Operational conditions
● Common irradiations
● Very high radiation fluences

New structures
(Giulio Pellegrini, CNM Barcelona)

● 3D detectors
● Thin detectors
● Cost effective solutions
● Other new structures
● Detectors with internal gain
● LGAD:Low Gain Avalanche Det.
● Deep Depleted Avalanche Det.
● Slim Edges
● HVCMOS

Full Detector System
(Gregor Kramberger, Ljubljana University)

● LHC-like tests
● Links to HEP (LHC P2, FCC)
● Links electronics R&D
● Low rho strips
● Sensor readout (Caribou,Alibava) 
● Comparison: - pad-mini-full 

detectors - different producers
● Radiation Damage in HEP 

detectors
● Timing detectors
● Test beams

The RD50 collaboration
Organizational overview
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RD50
Co-Spokespersons: 

G.Casse and M. Moll
(Liverpool University, UK 
(CERN EP-DT) & FBK-CMM, 
Trento, Italy) 

Collaboration Board Chair & Deputy: G.Kramberger (Ljubljana) & 
tbc, Conference committee: U.Parzefall (Freiburg) CERN contact: 
M.Moll (EP-DT), Secretary: V.Wedlake (EP-DT), Budget holder: 
M.Moll & M.Glaser (EP-DT) , EXSO: R.Costanzi (EP-DT)



LHC, HL-LHC, FCC-hh
Moving forward

3

HEP moving forward
Higher statistics + higher energy = higher fluence and busier environment

additional proton-proton collisions (pileup) masking events of interest must be 
disentangled

strict requirements on resolution and radiation hardness for future silicon 
sensors

~now

2026

FCC-hh: Pileup of 1000



Tackling Fluence
How to cope with radiation

Defect characterization essential to cope with 
large fluences and integrated radiation expected in 
future hadronic experiments@CERN (HL-LHC, 
HE-LHC, FCC-hh):

● Factor 2x in fluence on inner pixel layers 
expected by 2026 (HL-LHC)

● Factor 20x in fluence needs to be 
accounted for next big physics and 
engineering challenge: FCC-hh

Timing capabilities degradation and sensor 
distruction (!!!) quite likely
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Tackling Fluence
Defect characterization
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RD50 map of most relevant defects for device performance near room temperature

Radiation damage of p-type diodes is dominated by acceptor removal in the beginning and afterwards by acceptor generation
B- turning to BiOi

+

Acceptor removal: Radiation induced de-activation of acceptors (p-type doping, Boron) 
Impact:

● Change of silicon conductivity
● Change of sensor depletion voltage and/or active volume
● Loss of gain in LGAD sensors, sets radiation harness limits for timing detectors



Tackling Fluence
Defect characterization
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Current status @RD50:

● Converging on consistent set of 
defects observed after p, n, 𝛑, 𝛄, e 
irradiation

● Parameterization of acceptor 
removal established within RD50 
covering six orders of magnitude in 
resistivity (10 kΩcm to 5 mΩcm) 

● Defect introduction rates are 
depending on particle type and 
energy, and some on material!

● Damage predictions are possible

● Extensive amount of data allowing to 
apply this knowledge to multiple 
areas of expertise @ RD50 
(HV-CMOS, LGAD, etc.)

“Study of BiOi defects”

by C. Liao, Institut für Experimentalphysik, 
Universität Hamburg

Microscopic origin: Formation of defects containing Boron that no 
longer acts as shallow dopant



Tackling Fluence
HV-CMOS programme

CERN-RD50 CMOS Working Group
(>40 people, 14 institutes)

Programme to study and develop monolithic CMOS 
sensors with:

● High granularity
● High radiation tolerance
● Lower material budget and cost
● Built on LFoundry 150 nm HV-CMOS tech

Programme includes:
● ASIC design
● TCAD simulations
● DAQ development
● Performance evaluation
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For more information, see the talk:

Timing properties of the RD50-MPW2 CMOS detector, Bojan Hiti, Jozef Stefan Institute (SI)

RD50-MPW1 (April 2018)
Matrix of HV-CMOS pixels

● 50 μm x 50 μm pixel size
● Analogue & digital readout in 

sensing area of the pixel 
● Continuous readout (FE-I3)
● 40 rows x 78 columns

RD50-MPW2 (January 2020)
Matrix of HV-CMOS pixels

● 60 μm x 60 μm pixel size
● Improved analogue readout in 

sensing area of the pixel
● Fast response rate
● 8 rows x 8 columns
● Improved ILEAK and VBD

RD50-MPW3 (December 2021)
…expected in 2022



Tackling Fluence
HV-CMOS programme
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For more information, see the talk:

Timing properties of the RD50-MPW2 CMOS detector, Bojan Hiti, Jozef Stefan Institute (SI)

Timing results of RD50-MPW2 
● Tested with IR laser (1064 nm) TCT setup and pulser
● Measurement repeated with 5*1014 neutron / 0.5 Mrad irradiated sample
● Higher pixel threshold in irradiated sample (samples not tuned)
● No difference at high signals, asymptotic time resolution: 160 ps

5e14 neutrons
0.5 Mrad

JSI TRIGA

[J. Debevc, JSI]

before irradiation after irradiation



Disentangling pileup
Timing detectors

As pileup increses, so does the necessity for strong 
timing capabilities

e.g. Average distances between vertices at z=0

● HL-LHC (pileup:140) = 1 mm
● FCC-hh (pileup:1000) = 125 um

To achieve the same pileup rejection ATLAS and CMS 
experiments @HL-LHC can obtain with σt = 25-30 ps, a 
FCC-hh detector would need σt = 1-5 ps
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Required time resolution per detector to achieve HL-LHC-like 
pileup

Interaction 
point
HL-LHC

Interaction
point
FCC-hh



Disentangling pileup
LGAD producers
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Origin: Pioneered by RD50 with CNM, 
Barcelona (and later also FBK, Trento)

Focused on fast-timing capabilities, 
embraced by:

● HEP: ATLAS (HGTD) and CMS (MTD) timing 
detectors at the HL-LHC

● Imaging, soft X-rays and low-energy 
electron detection etc.

● Quantum information, Nuclear and forward 
physics, etc… 

LGAD: highly doped layer of p-implant 
(Gain layer) near p-n junction creates a high 
electric field that accelerates electrons 
enough to start multiplication

Active LGAD producers

…+ more 
joining!



Disentangling pileup
LGAD sensors
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LGAD developments @ RD50 (since 2010!)

● Timing performance
● Geometry optimization: sensor thickness, gain layer profile 

and signal homogeneity (weighting field)
● Fill factor and signal homogeneity
● Mitigation: New and optimized LGAD concepts investigated
● Radiation Hardness
● Defect Engineering of gain layer: 

○ Ga instead of B or C co-implantation
○ Modification of gain layer profile

● Predictive model for operation performance (radiation, 
temperature, thickness, annealing, ….) 

σt < 30 ps!



Disentangling pileup
Limits of LGAD technology
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One big issue…
● Dead volume (gain 1) extends outside the JTE 

and inside the implanted gain layer
● Sensors with small pixels/strips have Fill 

Factor «100%
● Large pads (∼1 mm) are preferred
● Difficult to achieve high-granularity 4D 

detectors…

…with multiple solutions!
● iLGAD (Inverted LGAD)
● AC-LGAD/RSD
● DJ-LGAD (Deep-Junction)
● TI-LGAD (Trench-Isolated)

LGAD

AC-LGAD

TI-LGADDJ-LGAD

iLGAD



Improving resolution
AC-LGAD/RSD
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* RD50 member

+ RTO (Research and Technical 
Organisation)

O Commercial manufacturer

AC-LGAD/RSD: Combining internal gain with internal signal sharing

● Keep 100% fill factor

● Particle position reconstructed from relative signal shared on multiple pads

● σx < pitch/sqrt(12) possible! (with ToT/analog info)

● LGAD-level time resolution already proven

● Example: RSD project: aim for resolution in position < 5mm and in time ~20-30 ps



Improving resolution
AC-LGAD/RSD
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AC-LGAD/RSD status

● Variety of designs tested in multiple lab to target custom use-cases

● Tests undergoing to tests performances of AC-LGADs coupled to 
readout ASIC systems

● Information from analog readout used in conjunction to Machine 
Learning to improve spatial resolution

● Response characterization obtained with 120 GeV protons (@FNAL), 
betas, and IR laser (TCT)

FBK RSD2BNL 2020

ALTIROC 0AC-LGAD



Improving resolution
TPA-TCT
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1996 - TCT “invented”

2010 - edge-TCT 
developed within RD50

2013 - TCT 
commercialized

2015 - TPA-TCT - 
proof-of-concept presented 

by RD50

2020 - Table-top TPA-TCT 
laser commercialized

Pulsed laser induced generation of charge 
carriers inside detector

● Study of: electric field in sensor, charge 
collection efficiency, homogeneity,..

● Benchmark simulation tools, measure 
physics parameters from mobility to 
impact ionization

tim
el

in
e

TCT (red laser)
● short penetration length (650nm = 1.9eV)
● carriers deposited in a few mm from 

surface
● front and back TCT: study electron and 

hole drift separately
● 2D spatial resolution (5-10mm)

TCT (infrared laser)
● long penetration (1064nm = 1.17 eV)
● similar to MIPs (though different dE/dx)
● top and edge-TCT
● 2D spatial resolution (5-10mm)

TPA-TCT (far infrared)new!!!

● No single photon absorption in silicon
● 2 photons produce one electron-hole pair 
● Point-like energy deposition in focal point 
● 3D spatial resolution (1 x 1 x 10 mm3 )

e.g. deep n-well in HVCMOS Not 
resolved in SPA-TCT

Imaged by edge-TCT (left) and 
TPA-TCT (right|)



Recap & Conclusions 16

● Many results of the RD50 collaboration presented, but were just a small part of the corpus of RD50 recent 
achievements

● Developed network of expertise and experience in the various fields of radiation damage and sensor R&D

● RD50 mission focused on challenges for HL-LHC in terms of timing, radiation hardness, and much more; Main 
goals achieved by the collaboration!

● Strong share in the development of p-type sensors, 3D sensors, LGAD sensors, all essential for HL-LHC

● Important contributions to solid-state physics landscape of radiation induced defects in silicon materials

● Development of unique characterization methods for sensor (TPA-TCT, …) and material analyses

● Next challenge will be an order of magnitude (at least) harder: FCC-hh

○ Very extreme radiation conditions in the far future (10^17 neq/cm2) that will require a deeper understanding 
of material damage, defect characterization, etc.

○ Push for even stronger timing/4D capabilities by means of smarter use of sensor and geometry information
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