EMVSD Electromagnetic and Wake Solver Development

Meeting #02

Elena de la Fuente, Carlo Zannini, Lorenzo Giacomel

Excused: Giovanni Iadarola

Outline

1. Ez field comparison

- 2. Direct algorithm results
- 3. Indirect algorithm results
- Conclusions and next steps

CST field extraction

Туре								
E-Field			O Surface current (TLM only)			OK		
O H-Field and Surface current			O Power flow			Cance		
○ Farfield/RCS			O Current density			Apply		
O Field source			O Power loss density/SAR				- PP17	
				O Elec	tric ener	gy der	nsity	Previe
				() Mag	netic en	ergy d	lensity	Help
Label								
Name:	e-field ((t=0.	.3(0.0019	258))		🗹 Au	Itomatic	
Specifica	ation			~				
OFreq	Juency			Time	,			
Start tin	ne:			Time	;			
Start tin Step wie	iuency me: dth:			 Time 0 0.0019 	9258			
Start tin Step wie	iuency me: dth: time:			 Time 0 0.0019 3 	9258			
Start tin Step wid	ne: dth: time: Subvolum	e		 Time 0 0.0019 3 	9258			
Start tin Step wir End	ne: dth: time: Subvolum ates:	e		Time 0 0.0019 3 2D Plan	9258 e:			
Start tin Step wie End Use 1 Coordine	ne: dth: time: Subvolum ates: ire boundi	e ing ba	ox V	Time 0 0.0019 3 2D Plan None	9258 9258 e:			
Start tin Step wie End Use : Coordine Structu	uency ne: dth: time: Subvolum ates: re boundi -25	e ing bo	DX V	Time 0 0 0 0019 3 2D Plan None X Max:	9258 e: 25	+	0.0	
Start tin Step wie End Use : Coordina Structu X Min:	ne: dth: time: Subvolum ates: re boundi -25 -25	e ing bo	DX V 0.0 0.0	Time 0 0 0 0019 3 2D Plan None X Max: Y Max;	e; 25 25	+	0.0	

1) Field monitor with same timestep as the Warp simulation: dt=0.0019258

Nov 29, 2021

3) Generating all the plots and exporting the data to txt files (computationaly costly and time consuming)

2) Extracting the 1D plots for all the time samples for each value of z_k

Number Evaluate OD/1D/2D	3D	\times		
Field Result				
E-Field\e-field (t=0end	d(0.00192)) [pb]	Browse Results		
Component: Co Abs V	eal Part V	Browse All		
Calculation Range			Time/Frequency Settings	
OD = Point	Coord.System:		Note: only for results, containing multiple time or frequency sa	ample
◯ 1D = Curve/Line	WCS: X:		◯ fixed frequency	
◯ 2D = Area/Face	global (xyz) 🗸 🛛 🔍	27.5	O sweep frequency (evaluate all available samples/mod	es)
◯ 3D = Volume	Normal: Y:		 sweep frequency (userdefined samples) 	
	× v 0	27.5	◯ fixed time	
Select Solids	Stepsize (0=auto): Z:		 sweep time (evaluate all available samples) 	
Solids	0.0	50	Sweep time (userdefined samples)	
Result Value			From: To: Stepsize:	
Field Value	V Log file (decreas	es performance)	Time = 0 3 0.00192	58
Specials	🗌 Data file (decrea	ases performance)	Active (check here to enable dialogue)	
OK Cancel	Help DrawPoints Data	file Logfile	OK Cancel	

⊡-- is 2D/3D Results 🖮 📄 E-Field 😰 e-field (t=0..1(0.1)) [pb] - 😫 e-field (t=0..end(0.00192)) [pb] 🗄 🗟 Tables 🚊 📄 1D Results 🗄 📲 e-field (t=0..end(0.00192)) (pb)_Abs (Z) 🙀 e-field (t=0..end(0.00192)) (pb)_Abs_0D e-field (t=0..end(0.00192)) (pb)_Z_0D 🦗 e-field (t=0..end(0.00192)) (pb)_Z_0D_1 🦗 e-field (t=0..end(0.00192)) (pb)_Z_0D_2 🦗 e-field (t=0..end(0.00192)) (pb)_Z_0D_3 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_4 🦗 e-field (t=0..end(0.00192)) (pb)_Z_0D_5 🦗 e-field (t=0..end(0.00192)) (pb)_Z_0D_6 🙀 e-field (t=0..end(0.00192)) (pb) Z_0D_7 😽 e-field (t=0..end(0.00192)) (pb) Z_0D_8 🙀 e-field (t=0..end(0.00192)) (pb) Z_0D_9 🙀 e-field (t=0..end(0.00192)) (pb) Z_0D_10 🙀 e-field (t=0..end(0.00192)) (pb) Z 0D 11 ₩ e-field (t=0..end(0.00192)) (pb) Z 0D 12 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_13 🙀 e-field (t=0..end(0.00192)) (pb) Z 0D 14 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_15 ₩ e-field (t=0..end(0.00192)) (pb) Z 0D 16 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_17 ₩ e-field (t=0..end(0.00192)) (pb)_Z_0D_18 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_19 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_20 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_21 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_22 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_23 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_24 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_25 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_26 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_27 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_28 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_29 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_30 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_31 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_32 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_33 🙀 e-field (t=0..end(0.00192)) (pb)_Z_0D_34 🙀 e-field (t=0_end(0.00192)) (nb) Z_0D_35

CST field extraction

Cst_to_dict.py

4) Python script to read all the txt, plot the results and store the field matrix $E_z[z, t]$ in a dictionary with **pickle**

Warp field extraction

Cube_cavity.py

1) Stores the Ez field (and other variables) in $(0,0, z_k)$ for all the timesteps in a list with $length = (nt \cdot nz)$

2) Saves the field in a dictionary for post processing and save it to a file with pickle

Warp field extraction

postproc.py

	cst_to_dict.py	k postproc.py	٠	cube_cavity_impedan	ce.py ×	cube_cavity.py	×	wake_potential_cst.py
1	l ''' 2 File for pos	tprocessing wa	rp si	mulations				
	4 Reads th 5 Plots th 5 Obtains 7 8 '''	e out file wit e Electric fie the frequency	h pic ld ir of th	kle module 1 the longitud 1e Electric fi	inal di eld	rection		
$100 \\ 111 \\ 122 \\ 131 \\ 141 \\ 152 \\ 160 \\ 177 \\ 180 \\ 200 \\ 211 \\ 200 \\ 212 \\ 223 \\ 242 $	j import numpy from warp im pinport matpl import time import sys import os import scipy from copy im import pickl # read th with open(`o data = pk. print('sto print('sto print('sto)	as np port picmi otlib.pyplot a port copy e as pk e dictionary ut_nt2000/out. loads(handle.r red variables' .keys())	s plt txt', ead())	'rb') as han)	dle:			
25	5 5 # retriev	e the variable	s					
27 28 29 30 31 32 32 32 32 32 32 32 32 32 32 32 32 32	3 E ₂ t=data.ge E _x t=data.ge D E _y t=data.ge B _y t=data.ge Tho_t=data.ge Tho_t=data.get S z=data.get(' T t=data.get(' T t=data.get(' C nz=data.get(' N t=data.get(' N t=data.get(') N t=data	t('Ez') t('Ex') t('Ey') t('By') et('nho') x') y') z') t') 'nt') 'nz') et('xtest') et('ytest')						
43 44 45	- 3 ############# 4 # Plot 5 ###############	####### s # ########						
40	7 # Plot El 3	ectric field a	t cav	ity center				
49 50 51 52 53	Ez=[] Ez=np.reshap Ex=np.reshap Ex=np.reshap Ey=np.reshap t=np.array(t E_abs=np.sqr	e(Ez_t, (nz+1, e(Ex_t, (nz+1, e(Ex_t, (nz+1,) t(Ez[int(nz/2)	nt)) nt)) nt)) , :]*	#array t #array t #array t *2+Ex[int(nz/	o matri; o matri; o matri; 2), :]*'	x (z,t) x (z,t) x (z,t) x (z,t) *2+Ey[<i>int</i> (nz/2	2),	:]**2)

3) postproc.py: reads the dict in 'out.txt' file with pickle module and plots the Electric field, frequency and charge distribution of the simulation performed with *cube_cavity.py*

Warp field extraction

postproc.py

3) postproc.py: reads the dict in 'out.txt' file with pickle module and plots the Electric field, frequency and charge distribution of the simulation performed with *cube_cavity.py*

Also plots the comparison with CST if cst_to_dict.py has been run before

Warp fields fixed

With the help of Lorenzo, we changed the **beam definition** (Macroparticles where not defined correctly) and the **time profile.** Now the results are as expected

z [mm]

Comparison with CST

Outline

1. Ez field comparison

2. Direct algorithm results

3. Indirect algorithm results

Conclusions and next steps

Direct algorithm

$$W_z(x, y, s) = -\frac{1}{q} \int_{-\infty}^{\infty} E_z(x, y, z, t = (z+s)/c) dz$$

Integration in z over the whole domain (z_{min}, z_{max})

1) Define Wakelength and s vector

#--- set Wake_length, s
Wake_length=nt*dt*c - (zmax-zmin) - init_time*c
print('Max simulated time = '+str(round(t[-1]*1.0e9,4))+' ns')
print('Wake_length = '+str(Wake_length*123)+' mm')
ns_neg=int(init_time/dt) #obtains the length of the negative part of s
ns_pos=int(Wake_length/(dt*c)) #obtains the length of the positive part of s
s=np.linspace(-init_time*c, 0, ns_neg) #sets the values for negative s
s=np.append(s, np.linspace(0, Wake_length, ns_pos))

The negative values of s are related to the initial time in with the beam is injected (*init_time*) The positive values discretize the wake length with a resolution related to the timestep size: dt * c

2) Define Wakelength and s vector

## # Obtain W (s) # ##	
# s loop	#
<pre>for n in range(len(s)-1):</pre>	
<pre># # integral between zmin and zma # #integral of (Ez(xtest, ytest, #E - the correct integral is on</pre>	# x # # z, t=(s+z)/c))dz ly obtained when integrating the field in the cavity
<pre>k=0 for k in range(0, nt): t_s[k,n]=(z_interp[k]+s[n]) #compute integral if t_s[k,n]>0.0: it=int(t_s[k,n]/dt) Wake_potential[n]=Wake_</pre>	<pre>/c-zmin/c-t[0]+init_time #find index for t potential[n]+(Ez_interp[k, it])*dz_interp</pre>
q=(1 <mark>e</mark> -9)*1 <mark>e12</mark> Wake_potential=Wake_potential/q	<pre># charge of the particle beam in pC # [V/pC]</pre>

2) Integral (z_{min}, z_{max}) is very close to Integral (l_1, l_2) . The only differences observed are in the calculation of the *k* loss factor

$$k = -\int_{-\infty}^{\infty} \lambda(s) W_{\parallel}(s) \, ds$$

Direct algorithm

Direct_wake_potential.py : uses the Ez field from Warp

Direct_wake_potential_cst.py : used the Ez field from CST

Direct algorithm

Direct_wake_potential.py : uses the Ez field from Warp

Direct_wake_potential_cst.py : used the Ez field from CST

Impedance and loss factor

3) The charge density is obtained from the σ_z and beam charge q with a Gaussian profile

#obtain charge distribution with a gaussian profile charge_dist=(q*1-12)*(1/(sigmaz*np.sqrt(2*np.pi)))*np.exp(-(0.5*(s-0.0)**2.)/(sigmaz)**2.) #charge distribution [pC/m] charge_dist_norm=charge_dist/(q*1-12) #normalized charge distribution [-]

4) Perform the integral of the loss factor k

$$k = -\int_{-\infty}^{\infty} \lambda(s) W_{\parallel}(s) \, ds$$

-00

#perform the integral int{-inf,inf}(-lambda*Wake_potential*ds)
for n in range(len(s)):

k_factor=k_factor+charge_dist_norm[n]*Wake_potential[n]*ds

k_factor=-k_factor # [V/pC]
print('calculated k_factor = '+str(format(k_factor, '.3e')) + ' [V/pC]')

5) Obtain the impedance with *numpy.fft.fft()*

$$Z_{\parallel}(\omega) = -\frac{\int_{-\infty}^{\infty} W_{\parallel}(s) e^{-i\omega s} ds}{\int_{-\infty}^{\infty} \lambda(s) e^{-i\omega s} ds}$$

Obtain impedance Z||

#--- Obtain impedance Z with Fourier transform numpy.fft.fft

to increase the resolution of fft, a longer wake length is needed
f_max=5.0*1e9

t_sample=int(1/(ds/c)/2/f_max) #obtains the time window to sample the time domain data N_samples=int(len(s)/t_sample) print('Performing FFT with '+str(N_samples)+' samples')

print('Frequency bin resolution '+str(round(1/(len(s)*ds/c)*1g-9,2))+ ' GHz')
print('Frequency range: 0 - '+str(round(f_max*1g-9,2)) +' GHz')

Padding woth zeros to increase N samples = smoother FFT charge_dist_padded=np.append(charge_dist, np.zeros(10000)) Wake_potential_padded=np.append(Wake_potential, np.zeros(10000)) charge_dist_fft=abs(np.fft.fft(charge_dist_padded[0:-1:t_sample])) Wake_potential_fft=abs(np.fft.fft(Wake_potential_padded[0:-1:t_sample])) Z_freq = np.fft.fftfreq(len(Wake_potential_padded[:-1:t_sample]), ds/c*t_sample)*12-9 Z = abs(- Wake_potential_fft / charge_dist_fft)

Impedance

Direct_wake_potential.py : uses the Ez field from Warp

 $k_{factor} = 1.776e - 01 \left[\frac{v}{pc}\right]$

Direct_wake_potential_cst.py : used the Ez field from CST

 $k_{factor} = 5.740e - 02 \left[\frac{v}{pc}\right]$ value from CST: 5.790052e-02 Difference <1%

Impedance with CST's DFT

Using a 1000 simples in frequency DFT

A single sided DFT with 1000 frequency samples is used for the numerical fourier transformation:

$$S(\omega) = \frac{\Delta t}{\sqrt{\pi}} \sum_{k=0}^{N} s(k) \exp(-jk\Delta t \,\omega)$$

with:

dt: time sampling width.

N: number of time samples

w: angular frequency (1000 samples)

Source: CST's wake solver manual

Obtain impedance Z|| # ------

#--- DFT function definition like in CST [not working]

class Fourier:

def __init__(self, dft, freqs):
 self.dft = dft
 self.freqs = freqs

def DFT(F, dt, N):

#function to obtain the DFT with 1000 samples
#--F: function in time domain
#--dt: time sampling width
#--N: number of time samples

#define frequency domain N_samples=1000 # same number as CST f_max = 5.0 # maximum freq in GHz freqs=np.linspace(-f_max,f_max,N_samples)*1@9 #frequency range [Hz] dft=np.zeros_like(freqs)*1j padding=1 #length of the padding with zero F=np.append(F,np.zeros(padding)) print('Performing DFT with '+str(N_samples)+'samples') print('Frequency bin resolution'+str(round(1/(N*dt)*1@-9,3))+ 'GHz') print('Frequency range')

for m in range(N_samples):
 for k in range(N+padding):
 dft[m]=dft[m]+F[k]*np.exp(-1j*k*dt*freqs[m])

```
dft=dt/np.sqrt(np.pi)*dft #Magnitude in [Ohm]
freqs=freqs*1e-9 #in [GHz]
return Fourier(dft,freqs)
```


Outline

- 1. Ez field comparison
- 2. Direct algorithm results
- 3. Indirect algorithm results
- Conclusions and next steps

Indirect algorithm

$$\begin{split} qW_z(x,y,s) &= \\ &= \begin{bmatrix} \varphi(x,y=b_1) - \varphi(x,y) \end{bmatrix}_{z=-l_1} & \underset{t=(-11+s)/c}{\text{Poisson in}} \\ &- \int_{-l_1}^{l_2} E_z(x,y,z,t=(z+s)/c) dz & (15) \\ &+ [\varphi(x,y) - \varphi(x,y=b_2)]_{z=l_2} \,. & \underset{t=(12+s)/c}{\text{Poisson in}} \end{split}$$

The dominant part seem to be the **poisson phi** φ . According to the results of the direct integration, φ_{l1} **should cancel with** φ_{l2} ...

A normalization factor might be missing since ϕ is in the order of 1e9

Indirect algorithm results (CST)

Indirect_wake_potential_cst.py : uses the Ez field from CST

Indirect algorithm results (Warp)

-100 0

100 200 300 s[mm]

Indirect wake potential.py : uses the Ez field from Warp

Impedance results

Indirect_wake_potential.py : uses the Ez field from Warp

Indirect_wake_potential.py : uses the Ez field from Warp

*Impedance amplitude is normalized for the indirect algorithm

Outline

- 1. Ez field comparison
- 2. Direct algorithm results
- 3. Indirect algorithm results
- **Conclusions and next steps**

Next steps?

- Fix the poisson results from the indirect algorithm. Compare the fields from Warp and CST in different locations
- Compare the indirect integration from CST with the indirect algorithm
- Try the other CKC solver in Warp
- Perform a convergence analysis?
- Continue with the transverse Wake potential and impedance through Panofsky-Wenzel
- Try the EMcLAW cube cavity? (--> long term...)

