

FACET Project Forward Aperture CIVIS ExTension

for the FACET Group

Hale Sert

Istanbul University

LHC Forward Physics Working Group Meeting

14-15 December 2021

What is FACET?

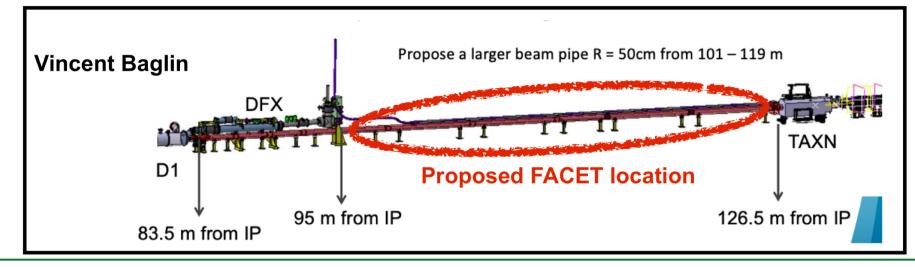
- It is a new detector proposed to be built as a subsystem of the CMS
 - for the HL-LHC data taking period, 3 ab^{-1}
- It is a detector designed to be built in the very forward region
 - η coverage: 6.2 $<\eta<$ 7.6, i.e polar angle: $1<\theta<$ 4 mrad
- It will search for the physics beyond the SM, long lived particles (LLPs).

What is FACET?

United to a state of the state

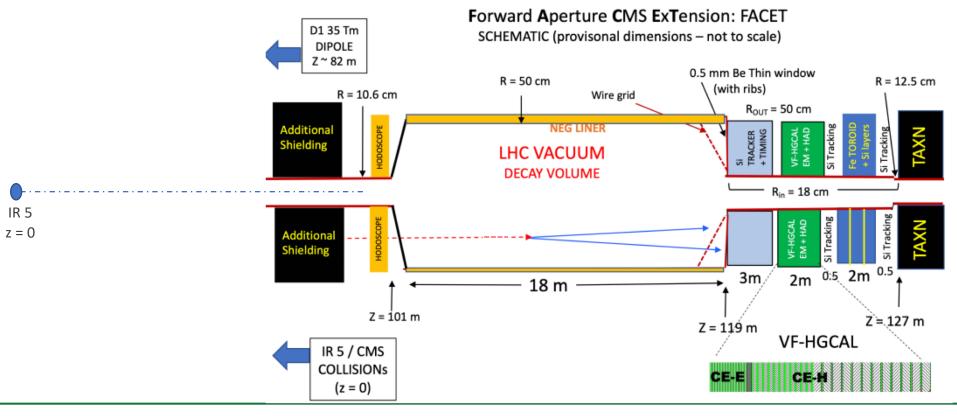
- It is a new detector proposed to be built as a subsystem of the CMS
 - for the HL-LHC data taking period, 3 ab^{-1}
- It is a detector designed to be built in the very forward region
 - η coverage: 6.2 $<\eta<$ 7.6, i.e polar angle: $1<\theta<$ 4 mrad
- It will search for the physics beyond the SM, long lived particles (LLPs).

Outline


- In which part of the CMS/HL-LHC will it be built?
- > What will be the design of the FACET?
- > What are the physics motivations of proposing such a detector?
- What is the status of the project?

FACET Location

- It will be built +100 m away from the interaction point, IP5 (on one side of CMS)
- New subsystem for CMS in region
 - between dipole D1 magnet and TAXN
- FACET will have L = 18 m long decay volume
 - from z = 101m to 119m
 - followed by an 8 m region instrumented with various particle detectors.



FACET Design

- Enlarging beam pipe from R =10.6 cm to R = 50 cm within 101 < z < 119 cm
- Shielding by about 30-50 m (300 $\lambda_{
 m int}$) of iron from HL-LHC magnets
- Hodoscope: a multi-layer radiation-hard scintillation counter(tag charged particles)
- High resolution tracking ($\sigma_{x,y} \approx 30 \ \mu m$ over 2 m) with timing ($\sigma_t \approx 30 \ ps$) information
- High Granularity Calorimeters HGCAL will be used with timing information

Search for new Beyond the Standard Model particles, Long-Lived Particles (LLPs)

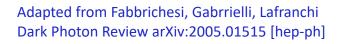
- The LLPs should penetrate 35-50 m iron & decay in vacuum
 - Masses up to ~ 25 GeV can be searched for (multiparticle decays)
 - Long lifetimes: unboosted lifetimes up to $c\tau = 0.1 \text{ m} 10 \text{ m}$ can be studied
 - Full luminosity (HL) ~ 140/X and 3 ab⁻¹
- A key feature of this proposal is the precise reconstruction of decay vertices in the vacuum, to eliminate background from interactions.
- The goal is to have almost zero background even at HL-LHC era in many channels, in which case even a few events would be a discovery!

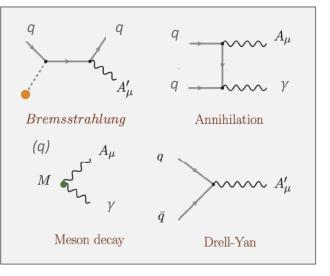
New Beyond Standard Model particles

- High mass searches at LHC nothing found yet
- Might be light (< 50 GeV) but with small coupling to SM particles (neutral particles coupling to the SM and DM particles)
 - dark photons,
 - heavy neutral leptons,
 - axion-like particles, and
 - scalars or dark Higgs particles
- Small couplings => long lifetimes : searches for LLPs that can manifest as displaced vertices

LLPs can be probed by experiments:

- FASER (Run 3) in the beam direction at a distance z = 480 m from the IP
- MATHUSLA (proposed exp. For HL-LHC)
- CODEX-b (proposed exp. For HL-LHC) (?)
- FASER-2 (proposed exp. For HL-LHC)
- NA62 (fixed target experiment at the CERN SPS)

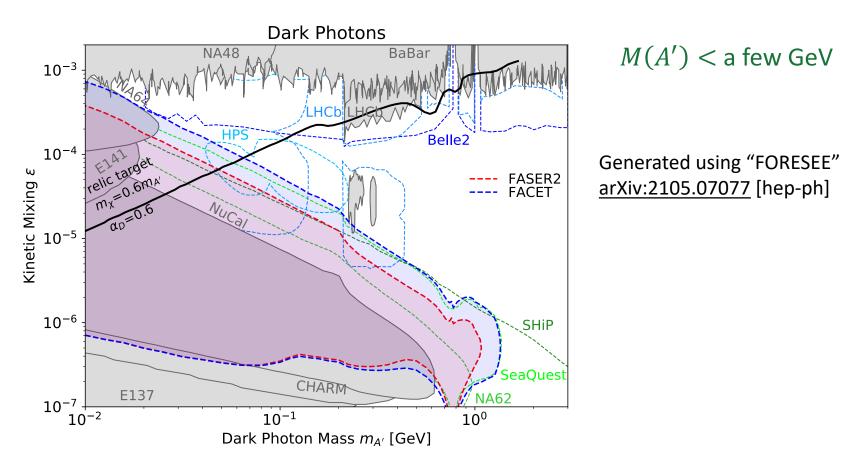

453

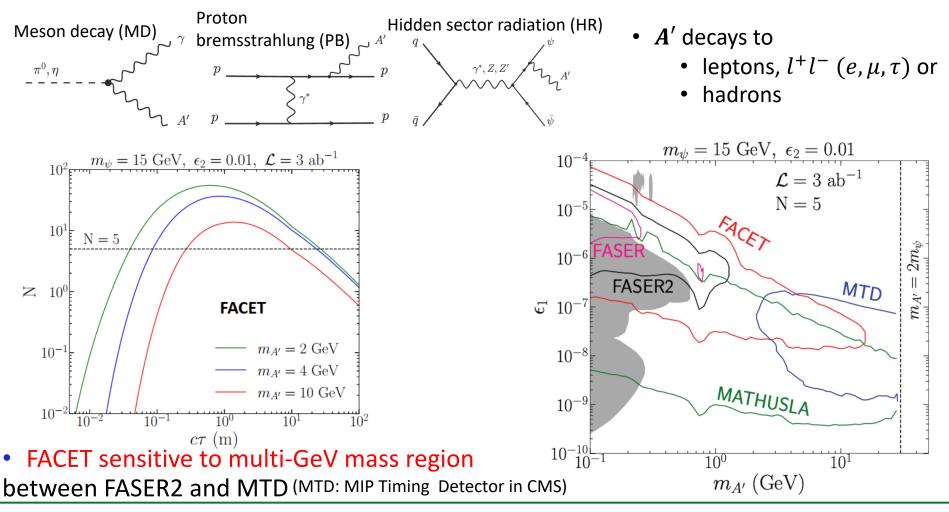

- A':massive, new neutral gauge bosons that do not have SM interactions.
 - However, they can mix kinetically with the SM photons.
- A massive virtual photon produced in pp collisions has some probability of conversion to an A'.

Two scenarios based on the mass of A':

Dark Photons, A'

- For $M(A') \le 1$ GeV, the most dominant sources
 - decays of π^0 , η^0 or η' mesons. (The fluxes are highest at small polar angles)
- For M(A') > 1 GeV, the main sources are:
 - $q + \overline{q} \rightarrow A' + X$
 - Drell-Yan : $q + \overline{q} \rightarrow A'$
 - Bremsstrahlung ($q \rightarrow q + A' \& p \rightarrow p + A'$)
 - Heavy quark decay $:c/b \to A' + X$

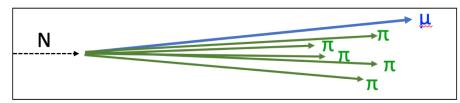



• An inclusive study with the mentioned production and decay processes

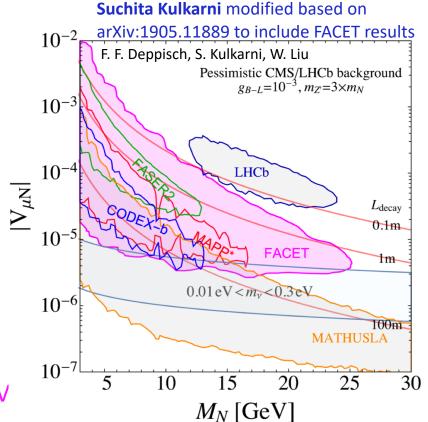
• FACET sensitivity competes with the fixed target experiments at low mass!

- New vector boson Z' + dark photon A' + hidden sector fermion ψ dark matter candidate
- In the considered model, dark photon can be produced in 3 main processes:

Dark Photons, A':



- Extensions of the SM involving heavy right handed neutrinos (N_i) or HNLs
 - may explain the light neutrino masses through the seesaw mechanism
- In the studied model, $U(1)_{B-L}$, there is a Z' boson and 3 additional RH neutrinos


• $Z' \to N_i N_i$

where

$$N \to l^\pm q \bar{q}$$
 and $N \to l^+ l^- \nu_l$ via $W^{\pm (*)}, Z^{(*)},$ with $l=e,\mu,\tau$

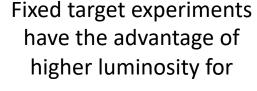
- Such a 6-prong event would have no background. The contours correspond to 3 events in 3 ab⁻¹.
- Comparison of HNL reach with other experiments (only LHCb is approved now)
- FACET shows a discovery reach up to ~25 GeV

12

90 DarkHiggs In the model: 10-3 a non-zero trilinear coupling $\phi\phi H$ Resulting in a 5% BF of $H \rightarrow \phi \phi$. .HCb 10^{-4} which is within the limits set on invisible *H* width Code θ 10⁻⁵ MATHUSL FACET 10^{-6} FASER2 - BR($H \rightarrow \phi \phi$)=0% FASER2 - BR(̀*H→*ģģ́)=5% 10^{-7} FACET - BR($H \rightarrow \phi \phi$)=0% FACET - BR $(H \rightarrow \phi \phi) = 5\%$ FACET has a unique sensitivity up to half the Higgs mass. 10^{-8} 10^{-1} 10^{0} 10^{1} Dark Higgs Mass m_{ϕ} [GeV]

- A dark sector partner ϕ of the 125 GeV Higgs boson, H(125)
- It can be produced in the decay of Higgs boson (125 GeV)
 - $H \rightarrow \phi \phi$

The reach of FACET for a dark Higgs:


• $\tau^{+}\tau^{-}$ if M(LLP) > 3.6 GeV no tracks or conversion

- $q\overline{q} + c\overline{c}$ if M(LLP) > ~ 4 GeV
- $b\overline{b}$ if M(LLP) >~ 10 GeV

LHC experiments becomes advantageous!

Backgrounds very low with a few tracks in the vacuum

M(LLP) > 1 GeV

M(LLP) < 1 GeV

e⁺*e*⁻ if M(LLP) > 2 MeV

• $e^{\pm}\mu^{\mp}$ if M(LLP) > 108 MeV

• $\mu^+\mu^-$ if M(LLP) > 212 MeV

Signal Topology

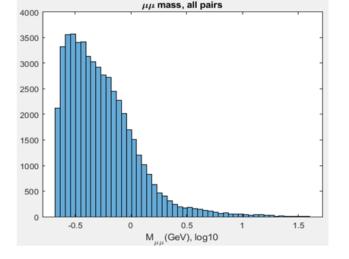
Signal Topology: Highly penetrating LLP decaying in vacuum to:

• γγ

Direct SM processes

• All SM particles, except ν 's are subtracted by the shielding before the hodoscope

For LLP $\rightarrow l^+l^-$ processes:


- Pileup with two muons or electrons from different collision in the same BX
 - eliminated by tagging the charged particle in the hodoscope and precise vertexing
 - as well as using the distance of closest approach of the tracks

For LLP \rightarrow 4 hadrons processes:

- Some 4-body K⁰ decays will be background in M(LLP) ~ 500 MeV/c, not at higher mass.
- Pileup of two unrelated hadronic K_S^0 decay ($\pi^+\pi^-$ 69%)
 - Superimposed in x,y,z consistent in time
 - Mass constraints and pointing back to IR requirements supresses the background

Indirect SM particles from interaction in the beam pipe and LHC components (p, n, π)

- Simulation predicts about **one neutral hadron** and ~ 1.9 **muons** entering the vacuum decay volume at R > 10.6 cm per BX
 - Neutral hadrons: K_S^0 , K_L^0 , Λ^0 and Ξ^0
 - HGCAL enables to reconstruct the invariant mass of hadrons
 - Requiring hadrons to point back to IR, they can be reduced
 - But may still be *overwhelming* for $LLP \rightarrow h^+h^-$ with $M(LLP) \leq 1 \text{ GeV}$
 - Muons: $LLP \rightarrow \mu^+\mu^-$
 - Are produced in various sources
 - It is dominant for $M(\mu^+\mu^-) < 1$ GeV

FACET will have

- a 30-50 m magnetic iron shielding
 - which reduces almost all charged SM backgrounds
- a "tagger" hodoscope, a multi-layer radiation-hard scintillation counter
 - to tag charged particles that would help to reject and ignore them in the trigger and analysis
- a **big vacuum tank** with the LHC quality, (18 m long and 1 m diameter pipe)
 - no interaction background
 - A high quality vacuum will be crucial for background reduction by requiring a decay vertex in the LHC quality vacuum
- a CMS upgrade quality tracking including timing information
- a high granular calorimeters for electromagnetic, hadronic calorimeters
- a muon detector

• A short physics reach paper is about to be submitted in arXiv.

FACET: A new long-lived particle detector in the very forward region of the CMS experiment

S.Cerci[†], D.Sunar Cerci[†] (Adiyaman Univ.), D.Lazic (Boston Univ.),
G.Landsberg^{*} (Brown Univ.), M.G.Albrow^{*}, J.Berryhill, D.R.Green,
J.Hirschauer (Fermilab), F.Cerutti, M.Sabaté-Gilarte (CERN),
J.E.Brücken (Helsinki Inst. Phys.), S.Kulkarni (Univ. Graz),
L.Emediato, A.Mestvirishvili, J.Nachtman, Y.Onel, A.Penzo (Univ. Iowa),
O.Aydilek, B.Hacisahinoglu, S.Ozkorucuklu^{*}, H.Sert, C.Simsek, C.Zorbilmez (Istanbul Univ.),
I.Hos[†] (Istanbul-Cerrahpasa Univ.), B.Isildak[†] (Ozyegin University),
N.Hadley, A.Skuja (Univ. Maryland), M.Du, Z.Liu, R.Fang (Univ. Nanjing),
V.Q.Tran (Tsung-Dao Lee Inst., Shanghai)

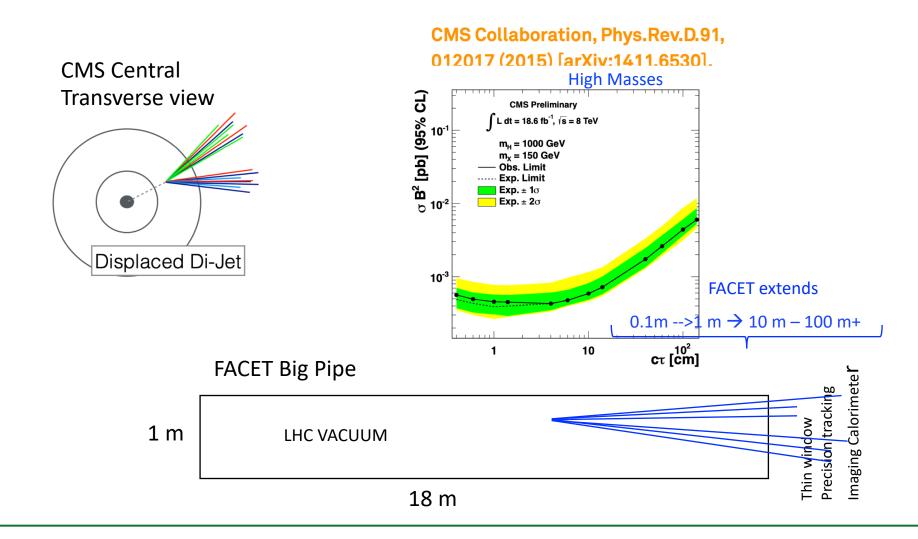
 $\label{eq:contacts:albrow} \ensuremath{^{\circ}}\xspace{1.5} Contacts: albrow@fnal.gov, Greg.Landsberg@cern.ch, Suat.Ozkorucuklu@cern.ch \ensuremath{^{\circ}}\xspace{1.5}\xspace{1.$

[†]Also at Istanbul University

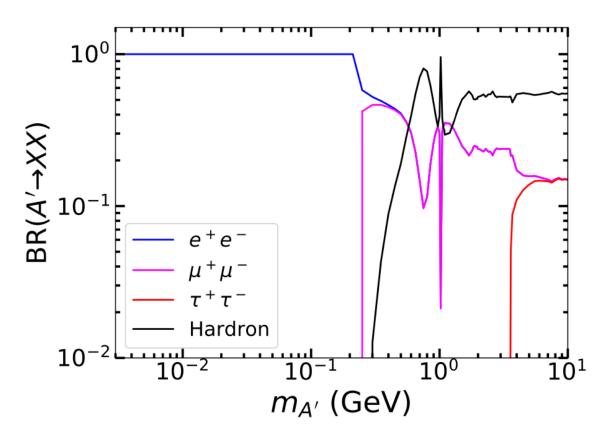
December 13, 2021

- "Enhanced long-lived dark photon signals at lifetime frontier detectors"
 - by *M. Du, R. Fang, Z. Liu and V.Q. Tran* published recently to **arxiv:2111.15503v1**
 - that includes the FACET physics reach!
- Letter of Intent to CMS is under development!
 - Proposed for Run4 (~2028)
- The studies for the detailed detector layout as well as physics simulations establishing FACET reach during the HL-LHC period has been ongoing

- FACET is proposed as a new subsystem for CMS in the high-luminosity LHC era.
 - FACET is planned to operate in Run 4 and beyond.
- FACET is designed to have **discovery potential up to LLP masses ~ 25 GeV**
- It requires an enlarged beam pipe, followed by high-precision tracking and calorimeter modules using identical technology to the planned CMS upgrades.
- With the features of FACET, like shielding, existence of charged particle tagger and a large vacuum volume for decays, we **aim** to have **almost zero background in many channels.**
- FACET covers a region of parameter space not accessible to other experiments
 - which makes it a project complementary to other searches.

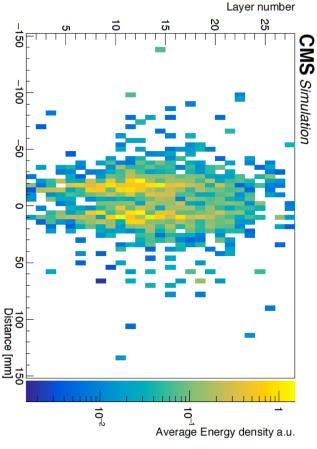


Emerging Jets with much longer c. τ than central detectors



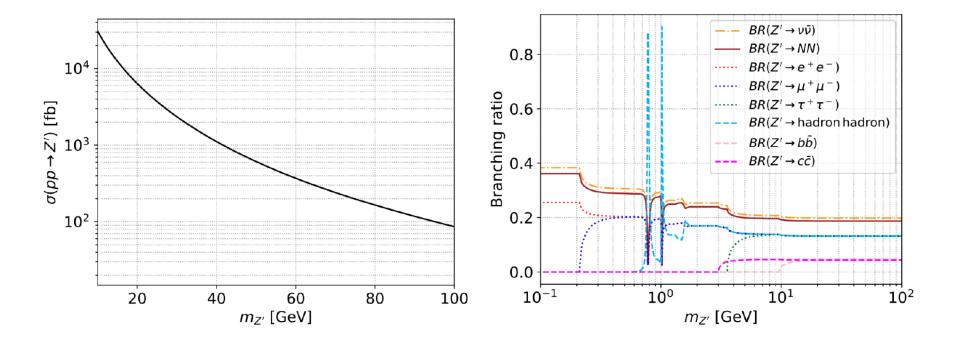
One example of Class A in FACET: arXiv:1912.00422 [hep-ph] Enhanced Long-Lived Dark Photon Signals at the LHC

Mingxuan Du,
1 Zuowei Liu, $^{1,\,2,\,3,\,*}$ and Van Que Tran^1

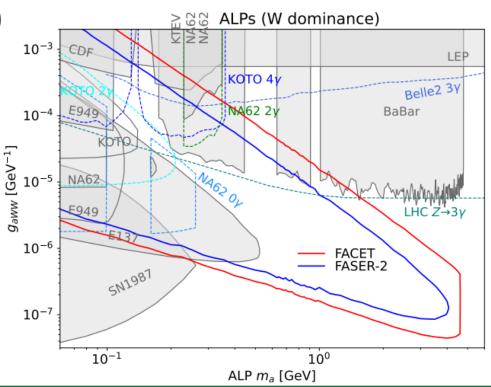


Critical issue is shower pointing (π^0 , η decays prompt) $\gamma\gamma$ vertex resolution, X⁰ trajectory and opening angle Single shower position resolution ~ 1mm Angle resolution < 7 mrad (25 GeV showers)

 $\sigma(M) \sim < \sim \text{ few } \%$ Simulation being done – $\pi^0 \pi^0$ pileup background?



Simulation two 80 GeV parallel photons separated by 30 mm. From CMS-TDR-019 Fig 5.1



- Massive axion-like particles (ALPs) may exist, and if produced at the LHC they may decay with long lifetimes into photon pairs or lepton pairs after penetrating thick absorbers.
- Shower pointing should be determined precisely
 - $\gamma\gamma$ vertex resolution (under study)
 - LLP trajectory
 - Opening angle
- An overview for the FACET axion-like particle reach in a specific model

• FACET can extend physics reach to smaller coupling and larger masses

- CMS triggers will be upgraded for HL-LHC
 - L1 output rate increased from 100 kHz to 750 kHz
 - HLT rate increased to 7.5 kHz from 1 kHz
- FACET will provide an additional external trigger to the L1 Global Trigger,
 - built from the tracking, hodoscope, calorimeter and muon information
- The goal of the trigger is to select all candidates for $X^0 \ge 2$ charged tracks or merged two photons while excluding SM particles such as K^0 and Λ^0 .

The major source is

Hadronic showers in the shielding

The remaining ones:

- True $K_L^0 \rightarrow \mu^+ \mu^-$ decays in the vacuum volume for $BR = 7 \times 10^{-9}$
- $K_L^0 \to \pi^{\pm} e^{\mp} v_e$ and $\pi^{\pm} \mu^{\mp} v_e \implies$ a misidentified π^{\pm} as lepton
 - Missing neutrino smears the pointing from the IR for M(LLP) < 0.5 GeV
- $K_L^0 \rightarrow \pi^+\pi^- =>$ two misidentified π^\pm as leptons/muons $BR < 10^{-8}$