Status of the W-boson mass combination

- Objectives
- Reminders
- This year's developments
- Converging?
- Upcoming projects

CDF: Chris Hays

D0: Boris Tuchming, Chen Wang

ATLAS: Jan Kretzschmar, M.Boonekamp, S.Amoroso (now CMS) and Nancy Andari (left)

CMS: Josh Bendavid LHCb: Mika Vesterinen

https://indico.cern.ch/category/3290/

lhc-tevatron-wmass-combinations@cern.ch

Status of the W-boson mass combination

- Objectives
- Reminders
- This year's developments
- Converging?
- Upcoming projects

Previous presentations:

Feb. '21 https://indico.cern.ch/event/1006071/ Oct. '20 https://indico.cern.ch/event/941711/

Goals

- Provide an endorsed world average combining existing hadron-collider results on m_w
 - Establish a methodology to combine present and future measurements
 - enable physics-modelling updates of past measurements (e.g. PDFs)
 - Properly correlate m_w and $\sin^2\theta_w$ measurements for global fits

Analysis strategy: measurement emulation

- Parametrized detector response
 - Leptons : eta- and pT-dependent resolution curves & efficiencies
 - Recoil response and resolution, including dependence on boson pT and event activity

Reproduces published distributions at the % level, and allows propagating variations in the underlying physics with <1 MeV precision in m_W .

• Event selections and m_W fit ranges as in the publications.

Analysis strategy: measurement emulation

- Parametrized detector response, following published information
 - Leptons : eta- and pT-dependent resolution curves & efficiencies
 - Recoil response, including "lepton removal" effects, dependence on boson p_T and event activity

Reproduces published distributions at the % level, and allows propagating variations in the underlying physics with <1 MeV precision in m_W .

Event selections and m_w fit ranges as in the publications.

Analysis strategy: measurement emulation

- Parametrized detector response
 - Leptons : eta- and pT-dependent resolution curves & efficiencies
 - Recoil response, including "lepton removal" effects, dependence on boson p_T and event activity

Reproduces published distributions at the % level, and allows propagating variations in the underlying physics with <1 MeV precision in m_W .

Event selections and m_w fit ranges as in the publications.

Generators

• Snapshot, to be updated:

Generator Sample type QCD accuracy \sqrt{s}	Powheg Direct NLO+NLL 2, 7 TeV	Powheg Reweighted NLO+NLL 2, 7 TeV	MiNNLO Reweighted NNLO+NLL 2, 7 TeV	Resbos Direct NLO+NLL 2 TeV	Resbos Direct NNLO+NNLL 2 TeV
PDF set			Events		
CTEQ6M	5×10^{8}	10^{7}	5×10^{7}	2.5×10^{9}	2.5×10^{9}
CTEQ66	5×10^{8}	10^{7}	5×10^{7}	2.5×10^9	2.5×10^9
CT10	5×10^{8}	$10^7 (*)$	5×10^{7}	_	_
CT10nnlo	5×10^{8}	10^{7}	5×10^{7}	_	_
CT14	5×10^{8}	10^{7}	5×10^{7}	2.5×10^9	2.5×10^9
CT18	5×10^{8}	10^{7}	5×10^{7}	2.5×10^9	2.5×10^9
CJ15	5×10^{8}	10^{7}	5×10^{7}	_	_
MMHT14	5×10^{8}	10^{7}	5×10^{7}	2.5×10^9	2.5×10^9
MSHT20	5×10^{8}	10^{7}	5×10^{7}	_	_
ABMP16	5×10^{8}	10^{7}	5×10^{7}	_	_
NNPDF3.1	5×10 ⁸	10^{7}	$5 \times 10^7 \ (*)$	2.5×10^9	2.5×10^9

Adding MSTH20, NNPDF4.0; and Resbos samples at 7 TeV

Validation (examples)

 CJ15 uncertainty identical (2.9 MeV total) in the CDF and Combination emulations. Discrepancies <0.5 MeV for all eigenset variations

m_w deviation from central PDF (CJ15nlo)

Chris Hays

Validation (examples)

- Reproducing existing combinations using published information
 - PDF uncertainties re-calculated using smearing procedure, and used in combinations
 - PDF uncertainty found fully correlated between CDF and D0
 - Non-trivial correlations between the ATLAS measurement categories; accurately reproduced and combined result

	Tevatron	Tevatron+LEP	ATLAS
Published	80387 ± 16	80385 ± 15	80370 ± 19
Validation	80388 ± 16	80385 ± 15	80370 ± 19

- PDFs are the main source of correlations
 - other sources are either small (EWK corrections) or arguably decorrelated (p_T^{W/Z})
 - Two-step procedure : correct to common PDF; combination including correlations
 - At this point, PDF extrapolations and uncertainties are calculated using Powheg.

- PDFs are the main source of correlations
 - other sources are either small (EWK corrections) or arguably decorrelated ($p_T^{W/Z}$)
 - Two-step procedure : correct to common PDF; combination including correlations
 - At this point, PDF extrapolations and uncertainties are calculated using Powheg.

CTEQ6.6	1.	2.	3.	4.	CT10	1.	2.	3.	4.
1. W+ 2 TeV	1	1	0.37	0.45	1. W+ 2 TeV	1	0.99	0.26	0.51
2. W ⁻ 2 TeV	1	1	0.36	0.46	2. W ⁻ 2 TeV	0.99	1	0.31	0.52
3. W+ 7 TeV	0.37	0.36	1	-0.42	3. W+ 7 TeV	0.26	0.31	1	-0.23
4. W- 7 TeV	0.45	0.46	-0.42	1	4. W ⁻ 7 TeV		0.52	-0.23	1

- PDF uncertainty correlations, for various PDFs:
 - Overview, to be updated (CT18, MSHT, NNPDF)

PDF set	Tevatron/LHC correlation				
PDF Set	NLO	NNLO			
CTEQ6M	72 %				
CTEQ6.1	70 %				
CTEQ6.6	74 %				
CT10	75 %	76 %			
CJ15	71 %				
CT14	81 %	71 %			
MMHT14	63 %	66 %			

- Preliminary combinations for ATLAS+CDF+D0.
 - Central values may need corrections : hidden for now!
 - Model-dependence of PDF extrapolations?
 - Impact of generator mismodellings?
 - Total (PDF) uncertainties :
 11–13 MeV (3–7 MeV).
 - CT18, MSHT20 available too.
 NNPDF4.0 considered.

	CTEQ6M	CTEQ6.1	CTEQ6.6	CT10nnlo	MSTW2008
Central value					
PDF	9	9	9	9	5
Total	14	14	14	14	12
$\chi^2/ndof$	47/35	46/35	50/35	48/35	60/35

Table 1: Combination summary: Legacy PDFs

	CT10	CJ15	CT14nlo	MMHT2014nlo	NNPDF3.1nlo
Central value					2
PDF	11	2	9	6	4
Total	16	11	14	13	11
$\chi^2/ndof$	46/35	53/35	48/35	58/35	49/35

Table 2: Combination summary: NLO PDFs

	CT14nnlo	MMHT2014nnlo	ABMP16nnlo	NNPDF3.1nnlo
Central value	L	<u>-</u>	<u>.</u>	
PDF	10	7	3	4
Total	15	13	11	11
$\chi^2/ndof$	45/35	45/35	55/35	50/35

Table 3: Combination summary: NNLO PDFs

Choice of target PDFs for final numbers

- Comparisons between existing Drell-Yan data and "recent" NNLO PDFs
 - Example shown here : D0 lepton asymmetry
 - Similar exercises for CDF, LHC shown in back-up

Dataset	CJ15nlo	MMHT14	NNPDF31	CT18NNLO	ABMP16
D0 W el nu lepton asymmetry ptl 25 GeV	32 / 13	24 / 13	19 / 13	17 / 13	23 / 13
Correlated χ^2	8.7	11	7.4	4.6	4.1
Log penalty χ^2	+0.00	+0.00	+0.00	+0.00	+0.00
Total χ^2 / dof	41 / 13	35 / 13	27 / 13	22 / 13	27 / 13
χ^2 p-value	0.00	0.00	0.01	0.05	0.01

- → consider MMHT14, NNPDF3.1, CT18NNLO, ABMP16
- → best overall description of the data by NNPDF3.1, CT18NNLO
- → to be repeated with MSHT20, NNPDF4.0

Full procedure, decomposed into generator and PDF effects:

$$m_W^{gen_i, PDF_i} = m_W^{gen_0, PDF_0} + \delta m_W^{gen_{0 \to i}, PDF_0} + \delta m_W^{gen_i, PDF_{0 \to i}}$$

where

- gen₀, PDF₀ are the generator and PDF used in the publications
- gen_i, PDF_i are the targets of the extrapolation
- Published measurements :
 - CDF: Resbos1 (NLO) CTEQ6M (NLO)
 - D0: Resbos1 (NNLO) CTEQ6.6 (NLO)
 - ATLAS: Powheg corrected to NNLO CT10NNLO
- $\delta m_W^{gen_i,PDF_{0 o i}}$ Main PDF targets : modern NNLO sets ~Finalized, including generator dependence of PDF extrapolations.
- $\delta m_W^{gen_{0 o i},PDF_0}$ Long neglected, and subject of ongoing work : Powheg, MiNNLO, New Resbos

Full procedure, decomposed into generator and PDF effects:

$$m_W^{gen_i, PDF_i} = m_W^{gen_0, PDF_0} + \delta m_W^{gen_{0 \to i}, PDF_0} + \delta m_W^{gen_i, PDF_{0 \to i}}$$

published

- gen₀, PDF₀ are the generator and PDF used in the publications
- gen_i, PDF_i are the targets of the extrapolation
- Published measurements :

where

- CDF: Resbos1 (NLO) CTEQ6M (NLO)
- D0: Resbos1 (NNLO) CTEQ6.6 (NLO)
- ATLAS: Powheg corrected to NNLO CT10NNLO
- $\delta m_W^{gen_i,PDF_{0 o i}}$ Main PDF targets : modern NNLO sets ~Finalized, including generator dependence of PDF extrapolations.
- $\delta m_W^{gen_{0 o i},PDF_0}$ Long neglected, and subject of ongoing work : Powheg, MiNNLO, New Resbos

Full procedure, decomposed into generator and PDF effects:

$$m_W^{gen_i, PDF_i} = m_W^{gen_0, PDF_0} + \delta m_W^{gen_{0 \to i}, PDF_0} + \delta m_W^{gen_i, PDF_{0 \to i}}$$

published

Discussed above

- gen₀, PDF₀ are the generator and PDF used in the publications
- gen_i, PDF_i are the targets of the extrapolation
- Published measurements :

where

- CDF: Resbos1 (NLO) CTEQ6M (NLO)
- D0: Resbos1 (NNLO) CTEQ6.6 (NLO)
- ATLAS: Powheg corrected to NNLO CT10NNLO
- $\delta m_W^{gen_i,PDF_{0 o i}}$ Main PDF targets : modern NNLO sets ~Finalized, including generator dependence of PDF extrapolations.
- $\delta m_W^{gen_{0 o i},PDF_0}$ Long neglected, and subject of ongoing work : Powheg, MiNNLO, New Resbos

Full procedure, decomposed into generator and PDF effects:

$$m_W^{gen_i,PDF_i} = m_W^{gen_0,PDF_0} + \delta m_W^{gen_{0 \to i},PDF_0} + \delta m_W^{gen_i,PDF_{0 \to i}}$$
 where published New Discussed above

- gen₀, PDF₀ are the generator and PDF used in the publications
- gen_i, PDF_i are the targets of the extrapolation
- Published measurements :
 - CDF: Resbos1 (NLO) CTEQ6M (NLO)
 - D0: Resbos1 (NNLO) CTEQ6.6 (NLO)
 - ATLAS: Powheg corrected to NNLO CT10NNLO
- $\delta m_W^{gen_i,PDF_{0 o i}}$ Main PDF targets : modern NNLO sets ~Finalized, including generator dependence of PDF extrapolations.
- $\delta m_W^{gen_{0 o i},PDF_0}$ Long neglected, and subject of ongoing work : Powheg, MiNNLO, New Resbos

• Example, for CDF/D0:

gen	i	
		-

	Generator	Powheg	Powheg	MiNNLO	Resbos	Resbos
	Sample type	Reweighted	Direct	Reweighted	Direct	Direct
	QCD accuracy	NLO+NLL	NLO+NLL	NNLO+NLL	NLO+NLL	NNLO+NNLL
	PDF set			Shift		
	CTEQ6M NLO	0	0	0	0	0
	CTEQ66 NLO	-15.4 ± 0.8	-15.8 ± 0.8	-14.0 ± 1.3	-17.8 ± 1.0	-16.6 ± 1.0
	CT10 NLO	-6.3 ± 0.8	-6.2 ± 0.8	-4.2 ± 1.3	_	_
7	CT10nnlo NNLO	-16.2 ± 0.8	-16.6 ± 0.8	-16.8 ± 1.3	_	_
	CT14 NNLO	$-4,1 \pm 0.8$	-3.9 ± 0.8	-6.8 ± 1.3	-7.1 ± 1.0	-6.9 ± 1.0
	CT18 NNLO	-6.2 ± 0.8	-6.6 ± 0.8	-8.5 ± 1.3	-9.4 ± 1.0	-7.2 ± 1.0
	CJ15 NLO	7.7 ± 0.8	7.9 ± 0.8	10.1 ± 1.3	_	_
	MMHT14 NNLO	-6.2 ± 0.8	-6.4 ± 0.8	-6.9 ± 1.3	-8.1 ± 1.0	-3.5 ± 1.0
	MSHT20 NNLO	-5.0 ± 0.8	-4.9 ± 0.8	-4.9 ± 1.3	_	_
	ABMP16 NNLO	5.2 ± 0.8	5.0 ± 0.8	-0.2 ± 1.3	_	_
	NNPDF3.1 NNLO	-13.8 ± 0.8	-14.3 ± 1.4	-14.1 ± 1.3	-15.8 ± 1.0	-8.0 ± 1.0

 $\delta m_W^{gen_i,PDF_{0 o i}}$

• Example, for CDF/D0:

gen	i	
		\

Generator	Powheg	Powheg	MiNNLO	Resbos	Resbos
Sample type	Reweighted	Direct	Reweighted	Direct	Direct
QCD accuracy	NLO+NLL	NLO+NLL	NNLO+NLL	NLO+NLL	NNLO+NNLL
PDF set			Shift		
CTEQ6M NLO	0	0	0	0	0
CTEQ66 NLO	-15.4 ± 0.8	-15.8 ± 0.8	-14.0 ± 1.3	-17.8 ± 1.0	-16.6 ± 1.0
CT10 NLO	-6.3 ± 0.8	-6.2 ± 0.8	-4.2 ± 1.3	_	_
CT10nnlo NNLO	-16.2 ± 0.8	-16.6 ± 0.8	-16.8 ± 1.3	_	_
CT14 NNLO	$-4,1 \pm 0.8$	-3.9 ± 0.8	-6.8 ± 1.3	-7.1 ± 1.0	-6.9 ± 1.0
CT18 NNLO	-6.2 ± 0.8	-6.6 ± 0.8	-8.5 ± 1.3	-9.4 ± 1.0	-7.2 ± 1.0
CJ15 NLO	7.7 ± 0.8	7.9 ± 0.8	10.1 ± 1.3	_	_
MMHT14 NNLO	-6.2 ± 0.8	-6.4 ± 0.8	-6.9 ± 1.3	-8.1 ± 1.0	-3.5 ± 1.0
MSHT20 NNLO	-5.0 ± 0.8	-4.9 ± 0.8	-4.9 ± 1.3	_	_
ABMP16 NNLO	5.2 ± 0.8	5.0 ± 0.8	-0.2 ± 1.3	_	_
NNPDF3.1 NNLO	-13.8 ± 0.8	-14.3 ± 1.4	-14.1 ± 1.3	-15.8 ± 1.0	-8.0 ± 1.0

• Example, for CDF/D0:

gen	i	
		•

	Generator	Powheg	Powheg	MiNNLO	Resbos	Resbos
	Sample type	Reweighted	Direct	Reweighted	Direct	Direct
	QCD accuracy	NLO+NLL	NLO+NLL	NNLO+NLL	NLO+NLL	NNLO+NNLL
Ī	PDF set			Shift		
_	CTEQ6M NLO	0		0		
	CTEQ66 NLO	-15.4 ± 0.8	-15.8 ± 0.8	-14.0 ± 1.3	-17.8 ± 1.0	-16.6 ± 1.0
7	CT10 NLO	-6.3 ± 0.8	-6.2 ± 0.8	-4.2 ± 1.3	_	_
	CT10nnlo NNLO	-16.2 ± 0.8	-16.6 ± 0.8	-16.8 ± 1.3	_	_
	CT14 NNLO	$-4,1 \pm 0.8$	-3.9 ± 0.8	-6.8 ± 1.3	-7.1 ± 1.0	-6.9 ± 1.0
	CT18 NNLO	-6.2 ± 0.8	-6.6 ± 0.8	-8.5 ± 1.3	-9.4 ± 1.0	-7.2 ± 1.0
	CJ15 NLO	7.7 ± 0.8	7.9 ± 0.8	10.1 ± 1.3	_	_
	MMHT14 NNLO	-6.2 ± 0.8	-6.4 ± 0.8	-6.9 ± 1.3	-8.1 ± 1.0	-3.5 ± 1.0
	MSHT20 NNLO	-5.0 ± 0.8	-4.9 ± 0.8	-4.9 ± 1.3	_	_
	ABMP16 NNLO	5.2 ± 0.8	5.0 ± 0.8	-0.2 ± 1.3	_	_
	NNPDF3.1 NNLO	-13.8 ± 0.8	-14.3 ± 1.4	-14.1 ± 1.3	-15.8 ± 1.0	-8.0 ± 1.0

21

• Example, for CDF/D0:

gen	i	

Gene	erator		Powheg	Powheg	MiNNLO	Resbos	Resbos
Samp	ole type	;	Reweighted	Direct	Reweighted	Direct	Direct
QCD	accura	cy	NLO+NLL	NLO+NLL	NNLO+NLL	NLO+NLL	NNLO+NNLL
PDF	set				Shift		
CTE	$ar{ ext{Q6M}}$ $ar{ ext{N}}$	ILO	0_	0	0	0_	0
CTE	Q66 N	ILO	-15.4 ± 0.8	-15.8 ± 0.8	-14.0 ± 1.3	-17.8 ± 1.0	-16.6 ± 1.0
CT10	л (C	ILO	-6.3 ± 0.8	-6.2 ± 0.8	-4.2 ± 1.3	_	_
CT10	Onnlo N	INLO	-16.2 ± 0.8	-16.6 ± 0.8	-16.8 ± 1.3	_	_
CT14	4 N	INLO	$-4,1 \pm 0.8$	-3.9 ± 0.8	-6.8 ± 1.3	-7.1 ± 1.0	-6.9 ± 1.0
CT18	3 N	INLO	-6.2 ± 0.8	-6.6 ± 0.8	-8.5 ± 1.3	-9.4 ± 1.0	-7.2 ± 1.0
CJ15	N	ILO	7.7 ± 0.8	7.9 ± 0.8	10.1 ± 1.3	_	_
MMI	HT14 N	INLO	-6.2 ± 0.8	-6.4 ± 0.8	-6.9 ± 1.3	-8.1 ± 1.0	-3.5 ± 1.0
MSH	IT20 N	INLO	-5.0 ± 0.8	-4.9 ± 0.8	-4.9 ± 1.3	_	_
ABM	I P16 №	INLO	5.2 ± 0.8	5.0 ± 0.8	-0.2 ± 1.3	_	_
NNP	DF3.1	INLO	-13.8 ± 0.8	-14.3 ± 1.4	-14.1 ± 1.3	-15.8 ± 1.0	-8.0 ± 1.0

 $\delta m_W^{gen_i,PDF_{0}}$

- Main findings
 - Significant difference between CTEQ6M and CTEQ6.6
 - Most often, PDF shifts agree across generators, within 1 MeV
 - Some counter-examples :
 - MMHT14, NNPDF3.1: NNLO Resbos2 3-8 MeV different relative to other generators
- Residual differences under discussion.

- Question: accuracy of Resbos1, compared to modern generators?
 - Resbos1 distributions obtained from a sample shared by CDF, matching what was used for their publications. D0 shared their event generation set-up.
 - Resbos1 is a semi-private generator, and it is difficult to reproduce these distributions externally
 - Comparisons to Powheg, MiNNLO, and the New Resbos
 - The New Resbos is an upgrade of Resbos1, with (among others) improved NNLO QCD corrections, and improved treatment of spin correlations

• W+ rapidity distribution for CTEQ6M (CDF setup), CTEQ6.6 (D0 setup)

- → CDF events match Resbos2+CTEQ6M, with 1-2% residuals
- → D0 events match Resbos2+CTEQ6.6 closely (<0.5%).

Invariant mass distribution in CDF events (before selections)

CDF events show deficit for m<70 GeV (then excess for m<50), compared to Powheg and Resbos2, for given $m_W \& \Gamma_W$

Invariant mass distribution in CDF events (after selections)

- CDF events stop at 150 GeV (not really a generator discrepancy; rather a generation setting).
- Resbos2, Powheg agree well above this value.
- Note this is after selections, so events with m>150 GeV contribute to the m_T , p_T^I plots, at high values.
 - → combined effect of mass differences is estimated to be +2 MeV

- Spin correlations.
 - General formula describing a spin-1 resonance production and decay:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dmdp_{\rm T}dy} \left[(1 + \cos^2 \theta) + \frac{1}{2} A_0 (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right],$$

Spin correlations

• Spin correlations

Discussion with Resbos authors

Resbos 1 :

- Unpolarised cross section is resummed
- The polarised cross sections are at fixed order
- New resbos (and other MC's)
 - All helicity cross sections are resummed, assuming resummation effects universal
 - Universality proven for Z+j (and probably W+j), not for inclusive production

Consequences

Recovers fixed-order behaviour of angular coefficients

$$\begin{split} A_i^{old}(p_T) &= \sigma_i^{FO}(p_T) / \sigma_{unpol}^{Res}(p_T) \\ A_i^{new}(p_T) &= \sigma_i^{Res}(p_T) / \sigma_{unpol}^{Res}(p_T) = \sigma_i^{FO}(p_T) / \sigma_{unpol}^{FO}(p_T) = A_i^{FO}(p_T) \end{split}$$

Discussion with Resbos authors

Resbos 1 :

- Unpolarised cross section is resummed
- The polarised cross sections are at fixed order
- New resbos (and other MC's)
 - All helicity cross sections are resummed, assuming resummation effects universal
 - Universality proven for Z+j (and probably W+j), not for inclusive production

Consequences

 "prediction": the ratio between "old" and "new" Ai's should match the ratio between resummed and fixed-order pT distributions

$$A_i^{new}(p_T)/A_i^{old}(p_T) = \sigma_i^{Res}(p_T)/\sigma_i^{FO}(p_T) = \sigma_{unpol}^{Res}(p_T)/\sigma_{unpol}^{FO}(p_T)$$

Discussion with Resbos authors

 Consequence: ratio between new and old angular coefficients should be universal, and match the ratio of resummed and fixed-order pT distributions

- → Universality : ✓. Note difference between CDF and D0 events at high pT.
- → with Resummed / FixedOrder pT distribution ratio. Not perfect, but qualitatively explains

- Corrections evaluated, through reweightings or cuts:
 - Invariant mass shape and range
 - Rapidity
 - Angular coefficients, A₀ → A₄
- In addition, direct comparisons are made between old and new samples, for same physics (PDF, QCD order, m_w and Γ_w)
- Note : all variations are studied assuming that the true p_T^W distribution does not change after selections, by virtue of successful u_T control plot in the Tevatron publications.
 - Control plots however do not have infinite statistics, so p_T^{w} has *some* freedom. Effects shown are therefore a lower bound

• Impact on final-state distributions : transverse mass, lepton $p_T - CDF$

- CDF, New Resbos, CDF reweighted to New Resbos
- Effect up to 1% on the shapes from direct comparison between CDF and New Resbos (purple), qualitatively understood using reweighting studies (blue)
- Fluctuations in ratio are from limited size of CDF sample (=reference at 1)

• Impact on final-state distributions : transverse mass, lepton $p_T - D0$

- Dashed D0 reference at 1; full D0 reweighted to New Resbos; blue New Resbos
- Effect up to 1% on the shapes from direct comparison, qualitatively understood using reweighting studies

Generator effects: summary

- Effects not small compared to a reasonable m_W variation, and required to be at least evaluated
- Internally agreed on procedure to estimate the corresponding correction; finalizing numbers
- Effects shown before are a lower bound, as discussed; caution needed.

Conclusions and next steps

- Ambitious plan now to stop working and document
 - A few decisions have to be made regarding corrections and extrapolations (first proposal)
 - Then rerun all combinations, compile results and submit for internal review

Prospects: ATLAS+LHCb

- Should be much simpler, and highly interesting. Starting.
 - Detailed information available for all used PDFs; up-to-date generators and a complete set of systematic uncertainties (including spin correlations)
 - Expect negative correlations of PDF uncertainties between ATLAS and LHCb (reminiscent of what we gained from the $\,\eta$ categories in ATLAS)

$$m_W = 80354 \pm 23_{
m stat} \pm 10_{
m exp} \pm 17_{
m theory} \pm 9_{
m PDF} \
m MeV$$

https://arxiv.org/abs/1508.06954

 $ho = \left(egin{array}{ccccc} {f G}^+ & {f G}^- & {f L}^+ & {f L}^- \\ {f G}^+ & 1 & & & \\ {f G}^- & -0.22 & 1 & & \\ {f L}^+ & -0.63 & 0.11 & 1 & \\ {f L}^+ & -0.02 & -0.30 & 0.21 & 1 \end{array}
ight)$

Back up

Choice of target PDFs

Comparisons between existing Drell-Yan data and "recent" NNLO PDFs

- CDF

Choice of target PDFs

- Comparisons between existing Drell-Yan data and "recent" NNLO PDFs
 - ATLAS

- → consider MMHT14, NNPDF3.1, CT18NNLO, ABMP16
- → best overall description of the data by NNPDF3.1, CT18NNLO

Spin correlations: "Old" vs "New" Resbos

Spin correlations: "Old" vs "New" Resbos

Spin correlations: "Old" vs "New" Resbos

