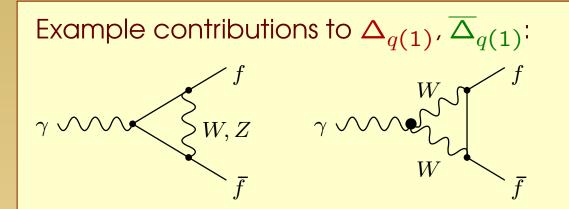
Some thoughts on theory uncertainties (2)

A. Freitas University of Pittsburgh Including photon exchange and photon form factor estimate: (neglecting boxes and s-dependence of Z form factors)

$$A_{4} = \frac{\sum_{q} X_{q} \ 4\left(\frac{v_{\ell}}{a_{\ell}} \frac{v_{q}}{a_{q}} + \frac{v_{\ell q}(s)}{a_{\ell} a_{q}}\right)}{\sum_{q} X_{q} \left(1 + \frac{v_{\ell}^{2}}{a_{\ell}^{2}} + \frac{v_{q}^{2}}{a_{q}^{2}} + \frac{v_{\ell q}^{2}(s)}{a_{\ell}^{2} a_{q}^{2}}\right)}$$

 $X_q = f_q(x_1)f_{\bar{q}}(x_2) + f_{\bar{q}}(x_1)f_q(x_2)$

$$v_{\ell q}(s) = v_{\ell} v_{q} + \frac{s - M_{Z}^{2} - iM_{Z}\Gamma_{Z}}{s} e^{2} e_{q} \left(1 + \overline{\Delta}_{q}\right)$$


$$\frac{v_{\ell}}{a_{\ell}} = 1 - 4s_{\ell}^2, \qquad \qquad s_{\ell}^2 \equiv \sin^2 \theta_{\text{eff}}^{\ell}$$

$$\frac{v_q}{a_q} = 1 - 4|e_q|(s_\ell^2 + \Delta_q) \qquad \qquad \Delta_q = \Delta_q$$
$$\Delta_q = \overline{\Delta}_q$$

$$\Delta_q = \Delta_{q(1)} + \Delta_{q(2)}$$
$$\Delta_q = \overline{\Delta}_{q(1)} + \overline{\Delta}_{q(2)}$$

known unknown

 $\Delta_{q(2)} \text{ is known (in SM) for leading Z pole term}$ $\overline{\Delta}_{q(2)} = \pm \overline{\Delta}_{q(1)} \times \frac{g^2}{16\pi^2} n_f, \qquad n_f = 6 + 6N_c \qquad \text{(maybe underestimate?)}$

Note: 1-loop boxes and s-dependence of Z vertex form factors also contribute at same order (1-loop without Z pole)

Z-pole 2-loop flavor dependence:

Assume: no EW 2-loop corrections included in analysis (i.e. they are theory unc.)

Schemes:

- α' : Use α, M_W, M_Z as inputs, perturb. exp. in α
- α : Use α, G_{μ}, M_{Z} as inputs, perturb. exp. in α
- G_{μ} : Use G_{μ}, M_{W}, M_{Z} as inputs, perturb. exp. in G_{μ}

Scheme:	lpha'	lpha	G_{μ}
$\Delta_{u(\alpha^2)} [10^{-5}]$	-1.74	-1.82	-1.45
$\Delta_{d(\alpha^2)}$ [10 ⁻⁵]	-1.49	-1.67	-0.88

Inputs: $M_Z = 91.1876 \text{ GeV}, M_W = 80.385 \text{ GeV}, M_H = 125.7 \text{ GeV}$

 $m_{\rm t} = 173.5 \; {\rm GeV}, \; \Delta \alpha = 0.059, \; \alpha_{\rm s} = 0.1184, \; G_{\mu} = 1.16638 \times 10^{-5} \; {\rm GeV^{-2}}$

Z-pole 2-loop flavor dependence:

Assume: no EW 2-loop corrections included in analysis (i.e. they are theory unc.)

Schemes:

- α' : Use α, M_W, M_Z as inputs, perturb. exp. in α
- α : Use α, G_{μ}, M_{Z} as inputs, perturb. exp. in α
- G_{μ} : Use G_{μ}, M_{W}, M_{Z} as inputs, perturb. exp. in G_{μ}

Scheme:	α'	lpha	G_{μ}	
$\Delta_{u(\alpha^2)} [10^{-5}]$	-1.74	-1.82	-1.45	
$\Delta_{d(\alpha^2)}^{(\alpha^2)}$ [10 ⁻⁵]	-1.49	-1.67	-0.88	
including non-factoriz				Czarnecki, Kühn '96
$ \begin{array}{c} \Delta_{u(\alpha^{2}+\alpha\alpha_{\mathrm{s}})} \left[10^{-5}\right] \\ \Delta_{d(\alpha^{2}+\alpha\alpha_{\mathrm{s}})} \left[10^{-5}\right] \end{array} $	+1.47	+1.38	+1.74	Harlander, Seidenstick Steinhauser '97
$\Delta_{d(\alpha^2 + \alpha \alpha_s)} [10^{-5}]$	+2.34	+2.15	+2.95	

Inputs: $M_Z = 91.1876 \text{ GeV}, M_W = 80.385 \text{ GeV}, M_H = 125.7 \text{ GeV}$

 $m_{\rm t} = 173.5 \; {\rm GeV}, \; \Delta \alpha = 0.059, \; \alpha_{\rm s} = 0.1184, \; G_{\mu} = 1.16638 \times 10^{-5} \; {\rm GeV}^{-2}$

Including photon exchange and photon form factor estimate: Impact of EW 2-loop contributions (without $EW \times QCD$):

 $\delta A_4 / A_4$: [10⁻⁴]

$m_{\ell\ell}~[{ m GeV}]$	Scheme:	lpha'	lpha	G_{μ}
60		0.37	0.35	15.50
70		0.52	0.60	8.99
80		1.53	1.61	37.37
M_Z -2		17.54	10.27	208.5
$M_{Z} - 1$		2.14	1.97	27.6
M_{Z}		0.58	0.59	0.57
M_Z +2		0.45	0.46	10.61
$M_{Z}+1$		0.55	0.55	16.15
100		0.84	0.83	24.85
110		0.80	0.81	21.71
130		0.53	0.56	12.34
150		0.34	0.38	6.04

- dominated by photon form factor unc. $\overline{\Delta}_q$
- artifically large corrections for G_μ scheme
 [same for (G_μ, s_ℓ, M_Z) scheme?]

Comments and discussion points

- Dependence of form factors on $s=m_{\ell\ell}$ and box contributions not taken into account so far
- IFI box and other QED requires separate uncertainty estimate
- Large corrections for G_{μ} scheme from photon exchange contribution: $\alpha = \frac{\sqrt{2}G_{\mu}s_{w}^{2}M_{W}^{2}}{\pi}(1 - \Delta r)$ \rightarrow Anything different being done in generators?
- Plan for O(αα_s):
 include in analysis, or use available results for error estimate?
 [should be added in quadr. to O(α²) estimate]