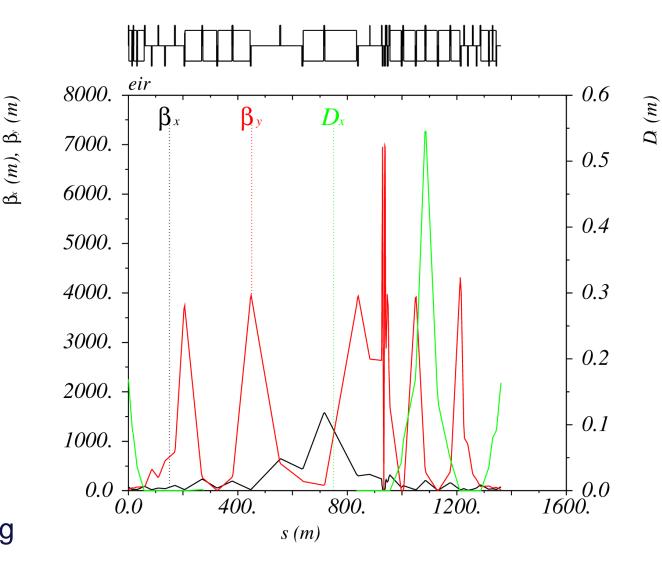
CERN EFFORTS

○ FCC

Tasks of Interest

- Simulation tools tilted solenoid, tapering, MADX-SAD comparison/translation
- Emittance estimates

FCC


- Through analytical formulas
- Studying how combinations of emittance sources add
- Aim to identify areas/magnets that need tighter alignment than others
- Exploring measurement techniques for FCC-ee
 - Implement and test AC-Dipole
 - Single kick simulations
 - Test suitability for closed orbit distortion measurements
 - Perform tracking studies for all scenarios

Relaxed Optics Macro

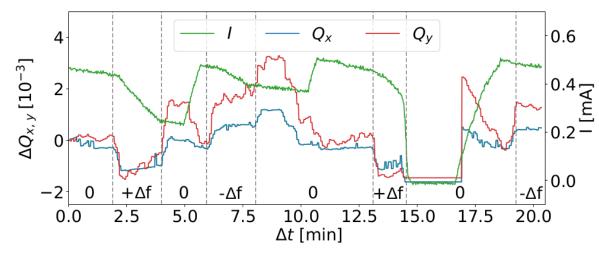
Strategy:

- 1. Save initial twiss function
- 2. Compute 10% larger in both planes
- 3. Match optics for this
 - Using matching section quads
 - Preserves sextupole phase advance
 - Match to the arc
- 4. Plot twiss and save optics to file
- 5. Repeat step 2 until no more convergence

Example job file and macros found in: /afs/cern.ch/work/l/lvanries/public/for_tuning _studies/relaxed_optics_example

Tilted Solenoid Strategies

○ FCC

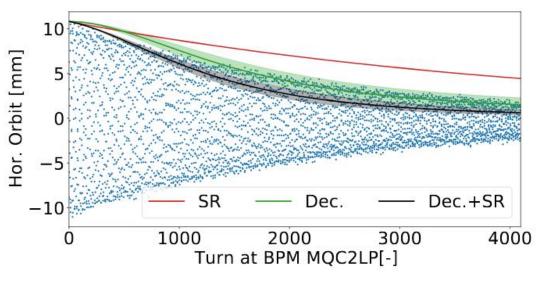

Method	Benefits	Drawbacks	Example files
Misalignment of Solenoid Implemented like alignment errors	Very simpleNo need to change lattice file	Radiation in solenoid not correctNot SAD layout	/afs/cern.ch/work/l/lvanries/ public/for_tuning_studies/Mi saligned_Solenoid
Sliced Solenoid interleaved with vertical bends angle = vertical dipole field	Gives correct radiation	Lattice has to be heavily modifiedNot SAD layout	/afs/cern.ch/work/l/lvanries/ public/for_tuning_studies/Int erleaved_Solenoid
Tilt through change of coordinate system Rotations and translations at solenoid entrance/exit	 Exact replication of SAD layout Exact agreement with SAD optics 	 Completely new lattice file from new translator Rotation causes strange dispersion 	/afs/cern.ch/work/l/lvanries/ public/for_tuning_studies/S AD_Style_Solenoid

SuperKEKB and FCC-ee

- Very similar machines (crab-waist optics, -I transformation, ...)
- SuperKEKB faces various commissioning challenges \rightarrow International task force formed
 - Low beam life time, especially for very squeezed optics
 - Hard to establish stable conditions for machine studies
 - Larger chromaticity and amplitude detuning than model
- Studies at SuperKEKB will help

FCC

- Finalizing FCC-ee design
- Showing commissioning challenges
- Finding optics measurements strategies



Optics measurement studies at SuperKEKB

- SuperKEKB uses Closed Orbit Distortion and Turn-by-Turn (TbT) measurements
 - Helps understanding and gaining hands-on experience for FCC-ee
- Establish good TbT measurements using an AC-dipole like excitation ongoing
 - Not yet optimized in SuperKEKB
- Measurement technique and theory of decoherence about to be finalized
 - Several uncertainties

FCC

- Emittance during measurement unknown
- BPM calibration and resolution
- Decoherence and head-tail

Proposed studies at SuperKEKB and LHC

• SuperKEKB:

- TbT measurements with different number of bunches, filling pattern and bunch charge
- Powering octupole coils in final focus
 - See impact on decoherence and amplitude detuning
 - Understand contribution of impedance, e.g. head-tail effect
- Aim to drive beam with AC-dipole like element at higher amplitudes
- LHC:

FCC

• Aiming for closed orbit distortion measurement at large machine