Hadronic light-by-light scattering and the muon g - 2

Jan Lüdtke, Massimiliano Procura

University of Vienna

FAKT Workshop, February 24, 2022

Introduction

• definition:

$$\langle \mu(p_2) | j^{\nu}(0) | \mu(p_1) \rangle = \bar{u}(p_2) \left[F_E(q^2) \gamma^{\nu} + F_M(q^2) \frac{i\sigma^{\nu\rho} q_{\rho}}{2m_{\mu}} \right] u(p_1)$$
with $q = p_{\nu}$, p_{μ} and $q_{\mu} = \frac{1}{2} (q_{\mu} - q_{\mu}) - F_{\nu}(q_{\mu})$

- with $q = p_2 p_1$ and $a_{\mu} = \frac{1}{2}(g_{\mu} 2) = F_M(0)$ • 3 classes of contributions in the **Standard model**:
 - pure QED:
 - more than 99.99 % of the full result
 - negligible uncertainty (5 loops)

Aoyama et al. 2012, 2019

- diagrams involving at least one electroweak gauge or Higgs boson
 - small and sufficiently precise
- QED diagrams with QCD insertions:
 - $\sim 0.006\,\%$ of the full result
 - responsible for almost the complete uncertainty
 - topic of this talk
- most recent values

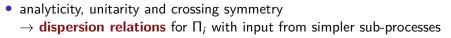
BNL 2004, FNL 2021, Aoyama et al. 2020

$$egin{aligned} & \mathsf{a}^{\mathsf{exp}}_{\mu} = (116\,592\,061\pm41) imes 10^{-11} \ & \mathsf{a}^{\mathsf{SM}}_{\mu} = (116\,591\,810\pm43) imes 10^{-11} \end{aligned}$$

 \rightarrow 4.2 σ discrepancy \rightarrow **new physics?**

Dispersive approach to HLbL

- two important hadronic contributions:
 - ▶ hadronic vacuum polarization can be related via dispersion relation to $\sigma(e^+e^- \rightarrow \text{Hadrons})$
 - hadronic light-by-light scattering (HLbL) focus on this from now on
- Lorentz- and gauge invariance: interaction of four electromagnetic currents described by scalar functions Π_i



Colangelo et al. 2015, 2017

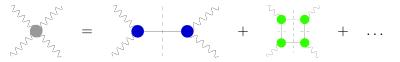
• a_{μ}^{HLbL} from 3-dimensional (numerical) integral over linear combinations of Π_i in limit $q \to 0$ ($\overline{\Pi}_i$) with known kernel functions

Jan Lüdtke (Uni Wien)

Intermediate states

• calculation can be organized as sum over intermediate states

Colangelo et al. 2015, 2017



- states with low mass and low multiplicity most important at low energies
- pseudoscalar poles (π^0 , η , η') numerically **dominant**
- dispersion relations allowed for a **model-independent** evaluation of a_{μ}^{HLbL} with **controlled uncertainties** for the first time
- result $a_{\mu}^{\text{HLbL}} = (92 \pm 19) \times 10^{-11}$ consistent with lattice value $(79 \pm 35) \times 10^{-11}$ Blum et al. 2020
- above $\sim 1 \,\text{GeV}$ many intermediate states become important and a model-independent evaluation of all of them is hardly possible

Jan Lüdtke (Uni Wien)

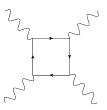
HLbL for g - 2

Short-distance constraints

- at q = 0, 3 independent kinematic variables \rightarrow choose Euclidean photon virtualities $Q_i^2 = -q_i^2$
- for $Q_3^2, \Lambda_{\rm QCD}^2 \ll Q_1^2, Q_2^2$ OPE relates HLbL to **VVA correlator**

Melnikov & Vainshtein 2004

- for massless quarks: VVA correlator given by axial anomaly (up to gluon anomaly)
- for $Q_1^2 \sim Q_2^2 \sim Q_3^2 \gg \Lambda_{QCD}^2$ HLbL given by OPE with massless **pQCD quark loop** as leading term Bijnens et al. 2019, 2021

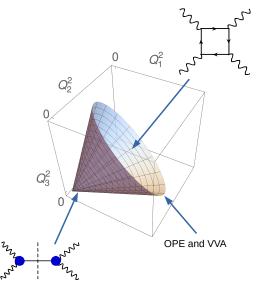


 perturbative and non-perturbative (OPE) corrections small (for not too small Q_i²)

4/9

Interpolation

JL & Procura, EPJ C 80 (2020) 1108



Strategy:

- construct functions interpolating between constrained regions
- calculate effect on a_{μ} via master formula
- **conservatively** estimate uncertainties

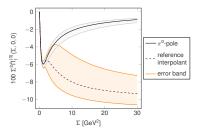
5/9

Results

JL & Procura, EPJ C 80 (2020) 1108

- effect of longitudinal short-distance constraints on HLbL is $(9.1\pm5.0) imes10^{-11}$
- **compatible** with recent results from Regge model and holographic QCD

 But: far smaller than often-used model by Melnikov and Vainshtein (2004), discrepancy well understood



- uncertainties well below near-term experimental goal of $\pm 16 imes 10^{-11}$
- uncertainties almost exclusively due to 1–2 GeV region
- improved knowledge of **resonances** in that mass-range needed to considerably improve

Jan Lüdtke (Uni Wien)

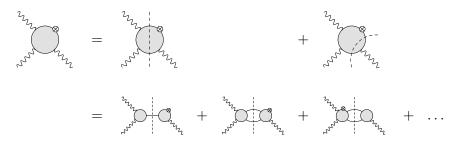
Novel dispersive formalism

JL, M. Procura and P. Stoffer, in preparation

- current formalism plagued by singularities for intermediate states with angular momentum ≥ 2
- singularities cancel in (infinite) sum over intermediate states due to sum rules → truncation leads to regularization ambiguities
- small effect at low energies, but important around 1–2 GeV and for transition to perturbative regime
- idea: dispersion relations in the limit $q \rightarrow 0$, i.e. for the $\overline{\Pi}_i$
- free of such singularities by construction
- leads to reshuffling of contributions compared to current formalism

Unitarity

• prize to pay: implementation of **unitarity** more difficult



- some sub-processes known, others have to be reconstructed from dispersion relations and unitarity again
- additional complication: full amplitude finite at q = 0, but some sub-processes not → cancellation necessary before limit q → 0

Conclusions

- SM prediction for muon anomalous magnetic moment limited by hadronic uncertainties
- connection between dispersive representation and asymptotic constraints in HLbL among most important open questions (conceptually and numerically)
- presented method how to model-independently combine QCD constraints on HLbL
- introduced novel dispersive formalism
- will allow to calculate also contributions due to higher-spin states

9/9

Thank you for your attention!