# **CALICE AHCAL** simulations

Marina Chadeeva on behalf of the CALICE Collaboration

LPI, MEPhI (Moscow)





- 1 The highly granular CALICE AHCAL
- 2 Digitisation of AHCAL simulations
- 3 Calorimetric observables for hadronic shower studies: standard and unique
- Secondaries in hadronic showers from MC-truth

# Real detector layout and composition



# CALICE AHCAL: scintillator-SiPM analog hadron calorimeter – baseline option for ILD HCAL

#### **Physics AHCAL prototype**

- sensor: scintillator + WLS fiber + SiPM
- rad: tiles  $3 \times 3$ ,  $6 \times 6$ ,  $12 \times 12$  cm<sup>2</sup>,  $\sim 90 \times 90$  cm<sup>2</sup>
- Ing: steel (2 cm) or W(1 cm), scint. 5 mm
- 38 layers,  ${\sim}5.3\lambda_{\rm I}$ , 7608 tiles in total
- tile side coating, external electronic boards
- Overview of data-MC comparisons for physics prototype (Geant4 up to v10.1) and references to publications can be found • here



# Technological AHCAL prototype

- sensor: scintillator+SiPM (direct readout)
- rad: tiles  $3 \times 3$  cm<sup>2</sup>,  $\sim 72 \times 72$  cm<sup>2</sup>
- Ing: steel (2 cm), scint. 3 mm
- 38 layers,  ${\sim}4.5\lambda_{\mathrm{I}}$ , 21888 tiles in total
- tiles indiv. wrapped in foil, embedded electr.
- In this talk, focus is on simulations of technological prototype and hadronic models from Geant4 v10.3.



# Detector model and simulation conditions

# TB data and reconstruction

- standalone AHCAL at CERN SPS in 2018 (one of configs with small tail catcher)
- muons, electrons and pions (10-200 GeV)
- mip calibration to equalise cell response (good for 99.9% of channels)
- ILCSoft-based reconstruction software
- dedicated particle ID for test beam data

# Simulations

- Geant4 v10.3, FTFP\_BERT\_HP, QGSP\_BERT\_HP
- detailed detector geometry and material composition, perfect alignment
- beam profiles from TB data
- digitisation to account for light collection, photodetection efficiency, SiPM saturation, noise (cell parameters from test beam DB)

# Colours on event display correspond to hit amplitudes from low (<3 MIP) to high (>5.5 MIP)

For data and MC: the same reconstruction chain and 0.5-MIP threshold for analysis





The highly granular CALICE AHCAL

# Digitisation of AHCAL simulations

3 Calorimetric observables for hadronic shower studies: standard and unique

Secondaries in hadronic showers from MC-truth

# Data-driven digitisation chain





#### Muon track hits in a single cell with different Gaussian smearing of MC



#### Data: ~1500 entries / hist; MC: >10000 entries / hist

# Digitisation results: muon track hit energy spectra



# Track hits of 10 GeV muons

- used for digitisation tuning at single cell level
- huge statistics: >1 mln. entries / hist in data and >2 mln. entries / hist in MC
- very good data-MC agreement



# Crosscheck on 40 GeV muons

- same digitisation conditions as for 10 GeV
- agreement within 2% around 1 MIP



# Digitisation: from CALICE AHCAL to ILD HCAL



# Digitisation in ILD simulations

- full ILD simulation using QGSP\_BERT\_HP physics list from Geant4 version 9.5p2
- comparison with the results from the AHCAL physics prototype
- details in the thesis of Oskar Hartbrich (2016, Chapter 5) • link to full text

# **Digitisation effect**

- Implementation of digitisation results in agreement of ILD simulations with AHCAL simulations and TB results
- Realistic digitisation worsens resolution by  ${\sim}4\text{--}5\%$

# **Relative resolution for hadrons**





The highly granular CALICE AHCAL

Digitisation of AHCAL simulations

3 Calorimetric observables for hadronic shower studies: standard and unique



# Main calorimetric observable: reconstructed energy

# Simulated single $\pi^-$ in the CALICE AHCAL

Event selection: the identified shower start at 3-6 layers of the AHCAL for shower containment

- algorithm to find the position of first inelastic interaction (shower start) is implemented in caliceSoft
- no specific clustering, all hits beyond the found shower start are considered to belong to the shower

# Reconstructed energy is the sum of hit energies



• leakage minimised due to event selection, no noticeable differences between models

• New calorimetric observables can be introduced to reveal differences between models.

# Calorimetric observable: number of isolated hits

CALICO

New calorimetric observables help to reveal differences between models.

Number of isolated hits within a hadronic shower (beyond the found shower start layer)

isolation: 0 neighbours in a cube of  $3{\times}3{\times}3$  cells around the hit



• Bertini cascade at 10 GeV invoked for both models - similar distributions

• non-smooth behaviour of FTFP\_BERT\_HP above 10 GeV

# Calorimetric observable: mean shower hit energy

# Mean energy of hits within a hadronic shower

average over all shower hits beyond the found shower start layer



- Bertini cascade at 10 GeV invoked for both models similar distributions
- more events with very high mean hit energy is predicted by FTFP\_BERT\_HP above 10 GeV
- more smooth distributions predicted by QGSP\_BERT\_HP



# Calorimetric observable: shower radius

۸/

# Mean energy weighted hit distance from shower axis

$$R_{\rm sh} = \frac{\sum_{i=1}^{n_{\rm sh}} e_i \cdot r_i}{\sum_{i=1}^{N_{\rm sh}} e_i}, r_i = \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2} - \text{hit radial distance from shower axis } (x_0, y_0),$$

shower axis is taken from primary track or radial centre of gravity



Bertini cascade at 10 GeV invoked for both models - similar distributions

- more events with small shower radius is predicted by FTFP\_BERT\_HP above 10 GeV
- more smooth distributions predicted by QGSP\_BERT\_HP

Marina Chadeeva (LPI)



Calorimetric observables for hadronic shower studies: standard and unique

# Calorimetric observable: longitudinal centre of gravity

# Mean energy weighted hit distance from shower start

$$Z_{\rm CoG} = \frac{\sum_{i=1}^{N_{\rm Sh}} e_i \cdot (z_i - z_{\rm start})}{\sum_{i=1}^{N_{\rm Sh}} e_i}, \, z_{\rm start} - \text{long. coord. of shower start}$$



- consistent predictions from both models
- maximum is around 1 nuclear interaction length and increases with energy as expected



Calorimetric observable: energy in central ring

# Additional "ring" observables (integrated over longitudinal depth)

- 3-cm wide rings around shower axis, 12 rings in total
- number of isolated hits energy sum in a cylinder,  $E_{\rm i}^{\rm ring}$

# Example: energy in the innermost cylinder around shower axis



- Bertini cascade at 10 GeV invoked for both models similar distributions
- more events with high energy density in the centre predicted by FTFP\_BERT\_HP above 10 GeV
- $\bullet\,$  more smooth distributions predicted by QGSP\_BERT\_HP





The highly granular CALICE AHCAL

2 Digitisation of AHCAL simulations

3 Calorimetric observables for hadronic shower studies: standard and unique



Number of isolated hits vs. number of neutrons in a shower at 40 GeV

N.B.: neutrons, which have one parent only that is also neutron, are not counted to avoid double counting



Different behaviour for both calorimetric and MC-truth Visible correlation between  $N_{\rm iso}$  and  $N_{\rm neutron}$ 

# MC truth: number of neutrons



Secondaries in hadronic showers from MC-truth

Energy in central ring vs. energy of  $\pi^0$ s in a shower at 40 GeV

#### Calorimetric observable: energy in innermost ring



# MC truth: energy of $\pi^0$ s





# Simulation of the AHCAL

# • Geant4 version 10.3, FTFP\_BERT\_HP and QGSP\_BERT\_HP physics lists

- digitisation sequence accounts for nonsimulated detector effects: scintillation light collection, photodetection efficiency, SiPM saturation, electronic noise
- digitisation is tuned by comparison of response to muons in data and simulations
- good agreement between data and simulations at MIP level

# **Comparison of Geant4 hadronic models**

- For standard observable, **good agreement** between models is observed in prediction of **reconstructed energy** in the range 10-80 GeV.
- New "high-granular" observables have been introduced (number of isolated hits, mean hit energy, shower radius and longitudinal centre of gravity), which help to reveal differences between models:
  - more smooth behaviour of QGSP\_BERT\_HP
  - peculiarities of FTFP\_BERT\_HP observed at the edges of kinematic region
- Correlation of calorimetric observables with MC truth can help to predict parameters of secondaries within a hadronic shower (some preliminary results can be found here).

#### Comparisons with data in progress and coming soon!



# Backup slides

# Single negative pions in the CALICE AHCAL

#### Event selection: the identified shower start at 3-6 layers of the AHCAL

• algorithm to find the position of first inelastic interaction (shower start) is implemented in caliceSoft

• no specific clustering, all hits beyond shower start are considered to belong to the shower

# Counting and amplitude observables

- Number of isolated hits,  $N_{iso}$  [isolation 0 neighbours in a cube of  $3 \times 3 \times 3$  cells around the hit]
- Number of track hits,  $N_{\rm trk}$  [defined as having 2 in-line neighbours and MIP-like deposition]
- Mean shower hit energy,  $\langle e_{\rm hit} \rangle$

• Shower radius  $R_{\rm sh} = \frac{\sum_{i=1}^{N_{\rm sh}} e_i \cdot r_i}{\sum_{i=1}^{N_{\rm sh}} e_i}$ ,  $r_i = \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2}$  - hit radial distance from shower axis  $(x_0, y_0)$ 

• Longitudinal shower centre of gravity  $Z_{\text{CoG}} = \frac{\sum_{i=1}^{N_{\text{sh}}} e_i \cdot (z_i - z_{\text{start}})}{\sum_{i=1}^{N_{\text{sh}}} e_i}$ ,  $z_{\text{start}}$  - long. coord. of shower start  $e_i$  - energy of hit with coordinates  $x_i$ ,  $y_i$ ,  $z_i$ ;  $N_{\text{sh}}$  - number of shower hits

# Additional "ring" observables (integrated over longitudinal depth)

- 3-cm wide rings around shower axis, 12 rings in total
- $\bullet$  number of isolated hits in a ring and energy sum in a ring,  $\textit{E}_{\rm i}^{\rm ring}$

# Number of track hits within a hadronic shower

track hit has only 2 neighbours arranged in line and MIP-like deposition (<5 MIP)



**ALICO** 

- Bertini cascade at 10 GeV invoked for both models similar distributions
- smaller number of track hits is predicted by FTFP\_BERT\_HP above 10 GeV



# Pion-induced showers in the CALICE AHCAL

- Geant4 v10.3, physics lists: FTFP\_BERT\_HP and QGSP\_BERT\_HP
- negative pions @ 10-80 GeV, about 500 kevt / sample (centrally produced by CALICE DESY group)
- digitisation: GeV-to-MIP conversion based on simulated muons, implementation of detector effects (SiPM pixel statistics and saturation), added noise from data samples

# Parameters of secondaries at generator level are extracted from MCParticle collection

# **Neutral pions**

are counted independently of their parents (some of them might be from  $\eta$  mesons)

- Number of neutral pions in an event,  $N_{\pi^0}$
- Sum of the energies of neutral pions,  $E_{\pi^0}$

#### Neutrons

are counted except for those that have one parent only that is also neutron (to avoid double counting)

- Number of neutrons from interactions, N<sub>neutron</sub>
- Sum of kinetic energies of neutrons from interactions, T<sub>neutron</sub>

# MC-truth: energy spectra of neutral pions in hadronic shower



Legend: 10 GeV, 40 GeV, 80 GeV (~100 kevt / sample after selections)

FTFP\_BERT\_HP

QGSP\_BERT\_HP



Very different spectra from FTFP and QGSP models above 10 GeV. Similar behaviour at 10 GeV due to the same Bertini model (BERT) in this energy range.

# MC-truth: spectra of neutron kinetic energy in hadronic shower



Legend: 10 GeV, 40 GeV, 80 GeV (~100 kevt / sample after selections)

FTFP\_BERT\_HP

QGSP\_BERT\_HP



Different shape of high energy tails from FTFP and QGSP models. Neutron energy cut is set to 1 MeV. Similar behaviour at 10 GeV due to the same Bertini model (BERT) in this energy range.