CEPC: Full detector simulation

Gang Li for the CEPC software group

Institute of High Energy Physics, Chinese Academy of Sciences Beijing, China

ECFA Higgs Factories: First Topical Meeting on Simulation Feb 01-02, 2022

Outline

- Introduction
- CEPC detectors
 - Detectors in CDR
 - The 4th conceptual detector
- Full simulation
- Summary

Physics motivation of CEPC

- The CEPC aims to start operation in 2030', as a Higgs(Z) factory in China, the plan
 - Above ZH threshold(240 GeV) for 7 years
 - Around and at the Z pole for 2 years
 - Around and above WW threshold for 1 year
- Possible pp collide (SppC) of 50 -100 TeV in the future

Operation mode		ZH	Z	W^+W^-
\sqrt{s} [GeV]		~240	~91.2	158-172
Run time [years]		7	2	1
CDR	$L / \text{IP} [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	3	32	10
	$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷
Latest	$L / \text{IP} [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	5	105.5	18.7

The large samples from 2 IPs: **10**⁶ Higgs, **10**¹² Z, **10**⁸ W bosons, provide an unique opportunity for

- High precision Higgs, EW measurements,
- Study of flavor physics (b, c, tau) and QCD,
- Probe physics beyond the standard model.

Detector concepts at CDR stage

PFA: 1 ILD-like, 2 full silicon tracker designs; IDEA with dual readout Propose a new detector concept, though the above can fulfil the requirements

The 4th Conceptual Detector Design

Full simulation

Supports both the detector R&D and physics performance study

Simulation framework (1)

- A detector simulation framework developed in CEPCSW.
 - A interface layer developed for Geant4 and Gaudi.
 - The geometries from DD4hep to Geant4 done by DDG4.
 - Could be a hybrid of fast and full simulation

Gaudi Components

G4 wrapper layer

Simulation framework (2)

The simulation chain is complete.

The MC truth available for performance studies

- Physics generators create kinematic information of primary MC particles.
- Detector simulation creates the relationship between MC hits and MC particles.
- Digitization creates the association between Digi and MC hits.

Simulation framework (3) EDM4HEP

- Adopted EDM4hep as the official EDM
- Generated from YAML files via PODIO toolkit
- Full support the detector R&D and physics studies

Simulation framework (4) DD4hep for Detector Description

- Originally developed for ILC and CLIC but with all of HEP in mind.
- ✤ A complete detector description with a single source of information
 - Geometry, materials, visualization, readout, alignment, calibration, reconstruction etc.
- Covering the full life cycle of an experiment
 - Detector concepts, optimization, construction and operation

Simulation framework (5) Detector Geometry Management

- The detector geometry convention
 - Sub-detectors: described by the XML compact files and the C++ constructors.
 - Full-detector options: only configured by the compact files.
- ✤ All the detector options will be managed by database and git repository.

Geometry implementation

- Silicon tracker
 - Barrel (CDR like): VXD04, SIT_Simple_Pixel, SET_Simple_Planar
 - Endcap: SiTrackerSkewRing similar with FTD of ILD, but support skew
- Drift chamber (DC): Cell partitioning with segmentation
- High granularity crystal calorimetry: crystal bar
- Hcal: CDR like or AHcal
- Magnet: DD4hep_Solenoid_o1_v01
- Yoke and muon detector: rotated polyhedral calorimeter and PolyhedraEndcapCalorimeter2

CDR Tracker with TPC

Calorimeters

- ✤ Si-W Ecal: SEcal05
- RPC-based Hcal (Semi-Digital Hadron Calorimeter): SHcalRpc01patch
- Yoke with scintillator Muon Detector: Yoke05patch
- Extensibility: radius, length, layer/module number, layer structure, symmetry

dE/dx Simulation

- A configurable fast sampling tool
 - Hit/track level sampling from empirical formula
 - Other sampling method is easy to be plugged in
- A track level dE/dx simulation in CEPCSW is ready

dN/dx Simulation and Reconstruction

- Integrate Garfield++ in the simulation
 - To handle energy loss and ionization process more precisely
- A waveform generation based on neural network developed
 - Based on Garfield++ but ~ 200 times faster than Garfield++
- A preliminary waveform reconstruction with Fourier transform
 - Other algorithms can also be plugin easily
- The event model for dN/dx study is under development
 - Depends on the PID algorithm

The results of stand-alone simulation for the protype study will be integrated into CEPCSW

High Granularity Crystal Calorimetry

- ✤ 8 staves in R-phi (Barrel)
 - Reconstruction is being developed based on the simulation
 - A 12 staves geometry scheme to be supported optional
- Endcap will be ready soon

Yoke and Muon Detector

- Configurable # of staves (baseline: 12)
- Configurable components
 - Iron-Air-module-Air-Iron
 - Module
 - Scintillator as sensitive

Simulated Hits

Summary

- CEPC Simulation study going well in the CEPCSW
- Could support various detector concepts R&D
- The new conceptual detector under study:
 - PID tracker
 - Crystal bar ECal & Scintillator glass HCal
 - Thin magnet
- Dedicated reconstruction algorithms under development
- Could meet the requirement of physics study in the near future
- Everyone welcome to have a try ...

from https://github.com/cepc/CEPCSW

\$ git clone git@github.com:cepc/CEPCSW.git \$ cd CEPCSW \$ git checkout master # branch name \$ source setup.sh \$./build.sh \$./run.sh Examples/options/helloalg.py

Extras

k4FWCore: Data Management in Gaudi

- k4FWCore provides the management of EDM4hep in Gaudi.
 - PodioDataSvc: data I/O (PODIO)
 - DataWrapper: PODIO data collection managed in Gaudi's Event Data Store.

https://github.com/key4hep/k4FWCore

Developed by Jiaheng Zou (IHEP), https://github.com/key4hep/k4LCIOReader

Simulation framework (3)

- ✤ An example: Drift Chamber
 - The drift chamber software is developed from scratch.
 - The simulation of dN/dx is implemented in Gaudi tools.
 - Non-uniform B-fields is also implemented for the performance study.

Detector Concepts

- CEPC developed several detector concept in past ten years (2012-2022), and two concepts are most important in history: one is the baseline design for conceptual design report (CDR) and another is the fourth conceptual detector design proposed in 2021 spring.
- Besides these two baseline concept in study timeline, many alternative detector concepts are also studied, such as design with full silicon tracker, innovative detector for electron-positron accelerator (IDEA), rotated crystal calorimeter. In these detector concepts, part of sub-detectors are replaced with different types and others are kept same as the baseline.

CDR Baseline Detector Simulation

 ILD-like detector, replaced with new MDI and optimized size, layout

Simulation software

- cepcsoft: migrated from ILCSoft (thanks ILC group), separated simulation and reconstruction
 - modified Mokka as description: correction, more support, new subdetector drivers
 - database and Mokka command as parameter input
 - Geant 4.9.6.p02
- CEPCSW: developing in Key4hep based on Gaudi, complete simulatereconstruct-analysis chain or separated
 - DD4hep: migrated from Mokka drivers (lcgeo and new constructors)
 - compact files as parameter input
 - Geant 4.10.06.p02

Progress

- Besides DC and Ecal, other sub-detectors have similar structure with CDR detector concept, in order to continue use some reconstruction for silicon tracker and hadronic calorimeter for study.
- Step by step, the CDR-like sub-detectors are replaced with new detector concept.
- At any step, a full simulation with complete detector is possible for study.
- At first step, only dominant components are considered in simulation, such as support layer and sensitive layer, and implementation of parts of mechanics and electronics are ongoing.
 - New vertex detector
 - Detail magnet

