ILD & SiD full simulation models

thanks to SiD and ILD colleagues for their input

Daniel Jeans, IPNS/KEK

ECFA Higgs Factories: 1st Topical Meeting on Simulation 1-2 February, 2022

Full detector simulation plays essential role in:

reliable estimates of physics potential at future experiments

understanding the impact of detector design on reconstruction / physics performance

understanding the impact of machine backgrounds, noise, mis-calibrations, imperfections, acceptance holes, complex corners of detectors, ... a robust, reliable, useful full simulation model should be sufficiently detailed

with detailed input from detector experts

- \rightarrow resolutions, material, infrastructure
- → ideally bench-marked against experience from subdetector prototypes

ILD and SiD detectors

designed for particle flow reconstruction at ILC, e+e- @ E_{CM} = (91), 250, 500, (1000) GeV

ILC physics imposes performance goals:

momentum resolution $\sigma_{pT} / p_T^2 \sim 2x10^{-5} \oplus 1x10^{-3} / (p_T \sin\theta) \text{ GeV}^{-1}$

impact parameter resolution $\sigma_{d0} \sim 5 \oplus 10 / (p \sin^{3/2}\theta) \mu m$

jet energy resolution $\sigma_{_{\rm F}}$ / E ~ 3 \rightarrow 5 %

Vertex detector:	silicon pixels	
	5 layers	3 double-layers
		тонин
Main tracker:	silicon strips	Time Projection Chambe
	$r_{out} \sim 1.22 \text{ m}$	1.78 m
E-cal:	silicon-tungsten	silicon-tungsten
		scintillator-tungsten
H-cal:	scintillator-steel	scintillator-steel
		RPC-steel
B-field	5 T	3.5 T ⁶

ILD and SiD detectors described using DD4hep

collection of subdetector drivers, with somewhat scalable dimensions full detector models defined in compact xml description

7

vertex detector

essential to achieve resolution goals: single hit resolution (~3 μm) and low material budget (0.15% X₀/layer)

several technological options considered: stay somewhat generic in the model

beam pipe and vertex detector constrained by beam backgrounds

beamstrahlung pairs near IP with different ILC beam parameters:

vertex / forward tracker

5 barrel layers, 2 x (4 + 3) forward disks

main tracker

5 barrels of si-strip detectors, 4 conical endcap disks

main tracker

beampipe & forward tracking disks

7 forward tracking disks

cables for inner detectors pass along beampipe: \rightarrow simulation model has thicker walled pipe

Forward region is complex

LumiCal \rightarrow luminosity measurement BeamCal \rightarrow beamstrahlung pairs \rightarrow machine tuning

Magnetic field

for general simulations, a uniform solenoid field is assumed

for specific studies: can use detailed map from field simulations

important for beam-induced pair bg: low momentum particles, often reflected from fwd region

calorimeters

ECAL: W + Si W + Scint.

HCAL: Fe + Scint. Fe + RPC

several mm-scale gaps due to ECAL support structures

described in the simulation model

interface boards & services in barrel-endcap gap

different HCAL geometries

"Tesla"

"Videau"

Hybrid calorimeter simulation

- ILD considers several technical solutions for calo implementation
- in each HCAL technology, readout layer contains active detector (scintilator / RPC) + readout PCB they have similar thickness (both in mm and X₀)
 - \rightarrow define combined model, with both active detectors (and no PCB)

→ simultaneously simulate both technologies, independent collections of hits choose which one to use at reconstruction time

similar hybrid approach in ECAL simulation

studies of MAPS-based ECAL can provide far superior 2-shower separation

Simple cluster performance is better than hit counting.

When clusters are weighted by properties (size & cluster location) the performance improves.

also somewhat improved energy resolution

studies performed in standalone G4 simulation

close contact with sub-detector R&D groups \rightarrow realistic simulation model

e.g. SiD \leftrightarrow CALICE Hadron Calorimeter

Active layer thickness = 7.383 mm

 \rightarrow also most appropriate G4 physics lists

muon detector system / voke instrumentation

Large / Small ILD versions

relatively easy due to scalable geometry description

recently prepared full set of physics samples @ 500 GeV \rightarrow extensive optimisation study with many physics studies

ddsim used to run simulations

after Geant4 modeling,

have list of energy deposits in sensitive detectors, their time, position, cellID, ...

hit digitisation → realistic detector response technology dependent smearing of hit position, energy, time e.g. ongoing studies on timing in calorimeter

only then ready to pass on to reconstruction algorithms and physics analysis !

Summary

- huge effort in producing detailed simulation models for ILC detectors SiD & ILD
- important to ensure close contact between
 hardware and software experts when developing models
 → benchmark performance against prototypes
- modular and scalar geometrical models
 - $\rightarrow\,$ easier to adjust global parameters
 - \rightarrow switch in and out different options
- rely heavily on software tools DD4hep, DDG4, to connect to Geant4