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Full detector simulation plays essential role in:

reliable estimates of physics potential at 
future experiments

understanding the impact of detector design 
on reconstruction / physics performance

understanding the impact of 
machine backgrounds, 

noise, mis-calibrations,
imperfections, 

acceptance holes, 
complex corners of detectors, ...
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a robust, reliable, useful full simulation model 
should be sufficiently detailed

with detailed input from detector experts

→ resolutions, material, infrastructure

→ ideally bench-marked against experience 
from subdetector prototypes
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ILD and SiD detectors
designed for particle flow reconstruction

at ILC, e+e- @ E
CM

 = (91), 250, 500, (1000) GeV

ILC physics imposes performance goals:

momentum resolution 
σ 

pT
 / p

T
2  ~  2x10-5   ⊕  1x10-3 / (p

T
 sinθ) GeV-1

impact parameter resolution
σ 

d0
 ~ 5 ⊕ 10 / (p sin3/2θ) μm

jet energy resolution
σ

E
 / E ~ 3 → 5 %
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Vertex detector:         silicon pixels
5 layers 3 double-layers

r
in
 ~ 13 mm 16 mm

Main tracker: silicon strips Time Projection Chamber 
(pixels) + si strips/pixels

r
out

 ~ 1.22 m 1.78 m 

E-cal: silicon-tungsten silicon-tungsten
scintillator-tungsten

H-cal: scintillator-steel scintillator-steel
RPC-steel

B-field 5 T 3.5 T
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ILD and SiD detectors described using DD4hep

collection of  subdetector drivers, 
with somewhat scalable dimensions

full detector models defined in compact xml description
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          vertex detector

essential to achieve resolution goals:
single hit resolution (~3 μm) and 
low material budget (0.15% X

0
/layer)

several technological options considered:
stay somewhat generic in the model 

3 double sensor layers
field cage, cryostat

3 double sensor layers

beampipe

mechanical
support

cables

scan of DD4hep model
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beam pipe and vertex detector constrained by beam backgrounds

beamstrahlung pairs near IP with different ILC beam parameters:
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vertex / forward tracker

5 barrel layers, 2 x ( 4 + 3 ) forward disks
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main tracker

5 barrels of si-strip detectors, 
4 conical endcap disks
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silicon 
envelope

TPC

inner 
silicon

main tracker

TPC readout 
infrastructure
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beampipe & forward tracking disks

7 forward tracking disks

cables for inner detectors pass along beampipe:
→ simulation model has thicker walled pipe
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Forward region is complex

LumiCal

ECAL endcap

support tube

cryostat

QD0 final focus magnet

beamcal

LHCAL

HCAL                    Yoke

LumiCal → luminosity measurement
BeamCal → beamstrahlung pairs → machine tuning
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Magnetic field

for general simulations, a uniform solenoid field is assumed

for specific studies: can use
detailed map from field simulations

important for beam-induced pair bg:
low momentum particles,

often reflected from fwd region
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calorimeters

ECAL:
W + Si
W + Scint.

HCAL:
Fe + Scint.
Fe + RPC
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several mm-scale gaps due to
ECAL support structures

described in 
the simulation
model
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interface boards & services in barrel-endcap gap



19

different HCAL geometries

“Tesla”                                                               “Videau”
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Hybrid calorimeter simulation

ILD considers several technical solutions 
for calo implementation

in each HCAL technology, readout layer contains 
active detector (scintilator / RPC) + readout PCB
they have similar thickness (both in mm and X

0
)

→ define combined model, with both active detectors (and no PCB)

→ simultaneously simulate both technologies,
independent collections of hits
choose which one to use at reconstruction time

(simplified)
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similar hybrid approach in ECAL simulation

silicon-only model                                 hybrid model

copper

ASICs

PCB

Silicon

copper

scintillator

silicon
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studies of MAPS-based ECAL
can provide far superior 2-shower separation

also somewhat improved 
energy resolution

studies performed
in standalone 
G4 simulation
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close contact with sub-detector R&D groups
→ realistic simulation model

e.g. SiD ↔ CALICE Hadron Calorimeter

→ also most appropriate G4 physics lists
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Checking new SiD simulation: 
compare simulated single particle 
energy resolution with CALICE test 
beam results
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muon detector system / 
yoke instrumentation

steel + scintillator

at high energies,
also use as 
calorimeter 
tail-catcher
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Large / Small ILD versions

relatively easy due to scalable geometry description

recently prepared full set of physics samples @ 500 GeV
→ extensive optimisation study with many physics studies
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ddsim used to run simulations

DDG4 used to interface geometry models to Geant4
→ sensitive layers and segmentation
→ detailed information about steps/hits
→ linking between hits and the

MCParticles which produced them
→ Geant4 configuration

physics lists, regions, range cuts
→ input / output  lcio, will move to EDM4hep
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after Geant4 modeling, 
have list of energy deposits in sensitive detectors, 

their time, position, cellID, ...

hit digitisation → realistic detector response
technology dependent

smearing of hit position, energy, time
e.g. ongoing studies on timing in calorimeter 

only then ready to pass on to 
reconstruction algorithms and physics analysis !
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Summary

- huge effort in producing detailed simulation models 
for ILC detectors SiD & ILD

- important to ensure close contact between 
hardware and software experts when developing models

→ benchmark performance against prototypes

- modular and scalar geometrical models 
→ easier to adjust global parameters
→ switch in and out different options

- rely heavily on software tools DD4hep, DDG4,
to connect to Geant4
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