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The need for fast simulation

Full SM simulation

Total cross-section @250 GeV for e+e− → 2f and 4f: O(1) nb
(Whizard).∫

Ldt ∼ = 5 ab−1 → 5 ?109 events are expected.
∼ 1-20 ms to generate one event.
∼ 2 ms to fastsim (SGV) one event.

∼ 5× 107 s of CPU time is needed, ie around 1 year. But:This goes to
2000 years with full simulation. And this is just to simulate as many
events as the data...

This does not include all bhabha’s and γγ events ∼ an order of
magnitude more⇒ without FastSim skimming, many of our results risk
to be systematics dominated by lack of MC statistics!
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The need for fast simulation

SUSY parameter scans

Simple example:
MSUGRA: 4 parameters + sign of µ
Scan each in eg. 20 steps
Eg. 5000 events per point (modest requirement: in sps1a’ almost
1 million SUSY events are expected for 500 fb−1 !)
= 204 × 2 × 5000 = 1.6× 109 events to generate...

Slower to generate and simulate than γγ events

Also here: CPU millenniums with full simulation
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Fast simulation for ILC

Fast simulation types, and the choice for ILC
Different types, with increasing level of sophistication:

4-vector smearing.
Parametric, needing input from FullSim: Traditional Delphes

Hard to treat correlations, eg. between p measurement and ip:s.
Hard to handle confusion in high granularity calorimeters.
No dE/dx, secondary vertices, effect of hit level inefficiencies ....
But very fast, and very condensed output.
By theoreticians, for theoreticians.

Covariance matrix machines, not needing input from FullSim:SGV
Full covariance matrix available for each track-helix.
Individual shower shape and position generated⇒ can
approximate confusion.
Hit patterns known⇒ dE/dX and hit-level efficiencies doable.
Covariance matrices available⇒ vertex fitting.
Anything up to DST-level detail can be output.
As fast as Delphes.
By experimetalists, for both exprimetalists and theoreticians.
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No dE/dx, secondary vertices, effect of hit level inefficiencies ....
But very fast, and very condensed output.
By theoreticians, for theoreticians.

Covariance matrix machines, not needing input from FullSim:SGV
Full covariance matrix available for each track-helix.
Individual shower shape and position generated⇒ can
approximate confusion.
Hit patterns known⇒ dE/dX and hit-level efficiencies doable.
Covariance matrices available⇒ vertex fitting.
Anything up to DST-level detail can be output.
As fast as Delphes.
By experimetalists, for both exprimetalists and theoreticians.

For ILC:
Only Covariance matrix machines have sufficient detail. Here, I’ll cover
“la Simulation à Grande Vitesse”, SGV.
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SGV Tracker simulation

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your Kalman filter
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.
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SGV Calorimeters, efficiencies, Pid, ...

SGV: How the rest works
SGV is a machine to calculate covariance matrices

Calorimeters: Follow
particle to intersection with
calorimeters.

Response type: MIP, EM or hadronic
shower, below threshold, etc.
Simulate single particle response
from parameters.
Easy to plug in more sophisticated
shower-simulation.

Other stuff:
EM-interactions in detector material
simulated
Plug-ins for particle identification,
track-finding efficiencies,...
Information on hit-patterns accessible
to analysis.
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SGV Calorimeters, efficiencies, Pid, ...

SGV: How the rest works

User data, delivered in Module-global arrays:
Extended 4-vectors .
Track helix parameters with correlations.
Calorimetric clusters.
When relevant: true values.
Auxiliary information on particle history, detector-elements used etc.
Event-global variables.

User Analysis tasks :
Jet-finding.
Event-shapes.
Primary and secondary vertex fitting.
Impact parameters.

Can be calculated by routines, included in SGV. Access routines
give an easy interface to the detector geometry.
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SGV Steering SGV

Steering SGV

Two steering files...
Program steering:

Single file, with sections for general, generator, detector and
analysis steering.
Many examples included.
Extensive comments in these.

Geometry description:
Described by cylinders and planes.
Attach material properties (rad. length, material, int. length, ...)
Attach measurement capabilities (quantities measured,
dependence on local angles, ...)
Several commented examples included.
For all details: Chapter 6 in sgv_ug.pdf (created during install)
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SGV Steering SGV

Example Geometry:TPC simplified and full

BF: BFIELD=3.5

TYPE: BARREL_TRACKING
.
.

LAYER : TPC
REPEAT : TIMES=26, DELTA_R=5.448

GEOMETRY: R=39.5 , ZMIN=0.0, ZMAX=230.25
MATERIAL: X0=0.00047
MEASUREMENT: CODE=1, SIG_RPHI=0.00301, SIG_Z=0.09,

SIG_RPHI_SLOPE=-0.0000058
ENDREPEAT :
.
.

TYPE: FORWARD_TRACKING
.
.

TYPE: BARREL_CALORIMETRY
.
.

TYPE: FORWARD_CALORIMETRY
.
.
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SGV Steering SGV

Example Geometry:TPC simplified and full
BF: BFIELD=3.5

TYPE: BARREL_TRACKING
.
.

LAYER : TPC
REPEAT : TIMES=225, DELTA_R=0.6

GEOMETRY: R=39.5 , ZMIN=0.0, ZMAX=230.25
MATERIAL: X0=0.000052222
MEASUREMENT: CODE=1,SIG_RPHI=0.0050,SIG_Z=0.04,

SIG_RPHI_BETA=0.090,
DIFFUSION=0.0053,
MOBILITY=3.0

ENDREPEAT :
.
.

TYPE: FORWARD_TRACKING
.
.

TYPE: BARREL_CALORIMETRY
.
.

TYPE: FORWARD_CALORIMETRY
.
.
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SGV Comparison with FullSim and test-beam

SGV and FullSim ILD: Tracking
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SGV Comparison with FullSim and test-beam

TPC point-resolution vs. Z and B in SGV and
test-beam

Points: Prototype
measurements (from
DBD/DBD SVN)
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SGV Comparison with FullSim and test-beam

SGV and FullSim ILD: Jets and events

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution (NB: r.m.s.,

including jet-finding uncertainties ⇒ not the

standard plot for JER!)

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
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SGV Detector optimisation

SGV for Detector optimisation

For the “IDR” detector optimisation effort, SGV was used to change the
ILD baseline geometry in many ways. For each of these modifications
in 5 steps were done:

1 Keep baseline aspect
ratio.

2 Keep baseline radius.
3 Keep aspect ratio = 1
4 Keep baseline length.
5 Keep length =

baseline-40 cm.

In addition:
Vary B-field, TPC inner radius, VD inner
radius, ...
2 × 5 × 5 × 6 = 300 different detector
models !
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SGV Detector optimisation

Detector optimisation: The good, the bad, the ugly

Higgs recoil-mass @350 GeV
for the nominal ILD (black), the
worst case (red) and the best
case (blue)
Simple b-tagger with two
observables:

ln(− ln(P(All are primary)))
Sum of 2:d to 5:th largest
ip/σip.
Optimise the cuts (on- the-
fly) for best S/

√
S + B.

S/
√

S + B vs radius of inner
layer of the VD

Recoil mass [GeV]
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SGV Detector optimisation

SGV for Detector optimisation: Outcome

Construct metrics on performance
- both low level and physics output
- and on potential savings w.r.t. the
baseline detector.

Only at least 5 % savings, best
∼ 5 performances in each
group of mitigation strategies.
For ∼ all strategies, the same
sizes remain.
performance and savings
iso-curves

Details: AWLC-KEK 2015.
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Installation and Technicalities

Technicalities
Written in Fortran 08, a re-write of the Fortran77-based SGV2
series.Managed in SVN.Install script included.
Requires:

Fortran compiler, e.g. gfortran - any version between 4.7 and 10 (⇒
future-proof!).
Standard Linux math: blas and lapack.
PYTHIA vers 6 (even if not needed for event-generation: SGV uses
many PYTHIA6 extras).
To produce the doc’s during installation: TexLive and pandoc

Features:
On-demand memory allocation.
Callable PYTHIA, Whizard 1.x, ...
Input from Hepevt/PYJETS, stdhep, slcio, HepMC2/3, GuineaPig.
Output of selected generated events to PYJETS, stdhep, slcio, or
HepMC2/3.
No imposed format of reconstructed events. Code to make
LCIO-DSTs or ROOT trees supplied.

Typical generation+simulation+reconstruction time O(1) ms.
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Installation and Technicalities

Getting started with SGV
Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Check that lapack and blas installed. If PYTHIA6 is not installed, check in
README how to get it from HepForge.

Then
cd sgv ; . ./install

This will take you about 30 seconds ...
Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get ROOT interface set up, and produce you first ROOT tree.
Get the LCIO, HepMC, and/or STDHEP i/o set up.
Make you first LCIO DST.
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Installation and Technicalities

Getting started with SGV
Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Check that lapack and blas installed. If PYTHIA6 is not installed, check in
README how to get it from HepForge.

Then
cd sgv ; . ./install

This will take you about 30 seconds ...
Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get ROOT interface set up, and produce you first ROOT tree.
Get the LCIO, HepMC, and/or STDHEP i/o set up.
Make you first LCIO DST.

To learn more about SGV:
Follow the tutorial ! (There is an
introduction first - The actual
tutorial starts a 20:50.)
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Summary

Summary
The SGV FastSim program for ILC physics simulation was
presented, and (I hope) was shown to be up to the job, both in
physics and computing performance and stability (millions of
events produced)
SGV is a full-blown fast detector simulation, not just a
parameterised four-vector smearer

Comparisons to FullSim was shown to be quite good, also for
complicated features like h.f. tagging.
A pre-existing full simulation is not needed to get realistic results.
Descriptions of e+e− detectors available after installation.
Still: SGV is as fast as eg. Delphes.

Many input-methods (internal and external). No output format
imposed on the user, plugins for LCIO and Root output available.
A covariance-machine like SGV is needed not to be cornered
between the systematic errors of a parameterised fast-sim, and
the statistical errors of FullSim
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SGV for physics: References

... a tool for rapid LC studies?
Peer-reviewed papers using SGV

Phys. Rev D101 (2020) 7, 075053
ILD-PHYS-2019-001 (Accepted by Phys. ReV. D)
Eur.Phys.J.C 76 (2016) 4,183
Eur.Phys.J.C 75 (2015) 12, 617
Phys. Rev D 91 (2015) 113007
Phys. Rev D 90 (2014) 114029
Phys. Rev D 89 (2014) 11, 113006
Eur.Phys.J.C 73 (2013) 12,2660
Eur.Phys.J.C 72 (2012) 2213
Phys. Rev. D 82 (2010) 055016
NIM A 579 (2007) 750
Eur. Phys. J. C 31 (2003) 421
Eur. Phys, J. direct (2000) 1

+ innumerable theses, reports, arXiv submissions and conference
proceedings. Including the Tesla TDR, LoI, TDR, the IDR and ILC/ILD
inputs to EPPSU and Snowmass 2013.
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SGV for physics: References

... a tool for rapid LC studies ?

SGV was used for
Defining the forward tracking geometry of LDC:

Vienna 2005. LDC and tracking

The utility (or not) of the silicon envelope
Valencia 2006

Merge of LDC and GLD into ILD
Cambrige 2008

Define the options for the IDR
KEK 2015

Also: SGV is part of the FullSim machinery: It is used to select
which part of the pairs-background to overlay.
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Calorimeter simulation: SGV strategy

Calorimeter simulation: SGV strategy

Concentrate on what really matters:
True charged particles splitting off (a part of) their shower:
double-counting.
True neutral particles merging (a part of) their shower with charged
particles: enetgy loss.

Don’t care about neutral-neutral or charged-charged merging.
Nor about multiple splitting/merging.
Then: identify the most relevant variables available in fast
simulation:

Cluster energy.
Distance to nearest particle of “the other type”
EM or hadron.
Barrel or end-cap.



Calorimeter simulation: SGV strategy

Calorimeter simulation: SGV strategy

Concentrate on what really matters:
True charged particles splitting off (a part of) their shower:
double-counting.
True neutral particles merging (a part of) their shower with charged
particles: enetgy loss.

Don’t care about neutral-neutral or charged-charged merging.
Nor about multiple splitting/merging.
Then: identify the most relevant variables available in fast
simulation:

Cluster energy.
Distance to nearest particle of “the other type”
EM or hadron.
Barrel or end-cap.



Calorimeter simulation: SGV strategy

Calorimeter simulation: SGV strategy

Concentrate on what really matters:
True charged particles splitting off (a part of) their shower:
double-counting.
True neutral particles merging (a part of) their shower with charged
particles: enetgy loss.

Don’t care about neutral-neutral or charged-charged merging.
Nor about multiple splitting/merging.
Then: identify the most relevant variables available in fast
simulation:

Cluster energy.
Distance to nearest particle of “the other type”
EM or hadron.
Barrel or end-cap.



Calorimeter simulation: SGV strategy

Observed distributions

Probability to split (charged
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Calorimeter simulation: SGV strategy
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Calorimeter simulation: SGV strategy
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Calorimeter simulation: SGV strategy

Observed distributions
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Calorimeter simulation: SGV strategy

Observed distributions
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LCIO Collections with DST output

LCIO Collections with DST output

Added sensible values to all collections that will (probably) be
there on the DST from the fullSim production.

BuildUpVertex

BuildUpVertex_RP

MarlinTrkTracks

PandoraClusters

PandoraPFOs

PrimaryVertex

RecoMCTruthLink

MCParticlesSkimmed
V0Vertices
V0RecoParticles
BCALParticles
BCALClusters
BCALMCTruthLink
PrimaryVertex_RP

Also added more relation links:

MCTruthRecoLink

ClusterMCTruthLink

MCTruthClusterLink

MCTruthTrackLink
TrackMCTruthLink
MCTruthBcalLink



LCIO Collections with DST output

Comments

Secondary vertices (as before):
Use true information to find all secondary vertices.
For all vertices with ≥ 2 seen charged tracks: do vertex fit.
Concequence:

Vertex finding is too good.
Vertex quality should be comparable to FullSim.

In addition: Decide from parent pdg-code if it goes into BuildUpVertex
or V0Vertices !
MCParticle :

There might be some issues with history codes in the earlier part
of the event (initial beam-particles, 94-objects, ...)



LCIO Collections with DST output

Comments

Clusters:
Are done with the Pandora confusion parametrisation on.
Expect ∼ correct dispersion of jet energy, but a few % to high
central value.
See my talk three weeks ago.
Warning: Clusters are always only in one detector , so don’t use
Ehad/EEM for e/π: It will be ≡ 100 % efficient !

Navigators
All the navigators that the TruthLinker processor makes when all
flags are switched on are created:

Both Seen to True and True to Seen (weights are different !)
Seen is both PFOs, tracks and clusters.
The standard RecoMCTruthLink collection is as it would be from
FullSim ie. weights between 0 and 1.
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