IDEA model in DELPHES

<u>F. Bedeschi,</u> ECFA Higgs Factories:

<u>1st Topical Meeting on Simulation,</u> OnLine, February 2022

IDEA detector
Tracking
Application example
Vertexing
PID
Calorimetry
Conclusions

Detector concept IDEA

Si pixel vertex detector

5 MAPS layers
 R = 1.7 - 34 cm

Drift chamber (112 layers)

→ 4m long, r = 35 - 200 cm

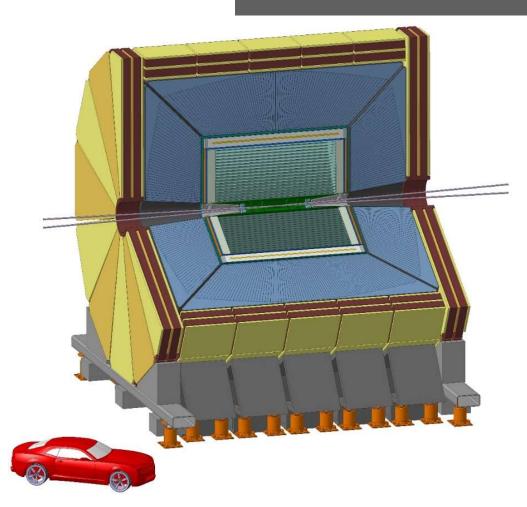
Si wrapper: strips

Solenoid: 2 T - 5 m, r = 2.1-2.4

0.74 X₀, 0.16 λ @ 90°

Pre-shower: μRwell

Dual Readout calorimetry

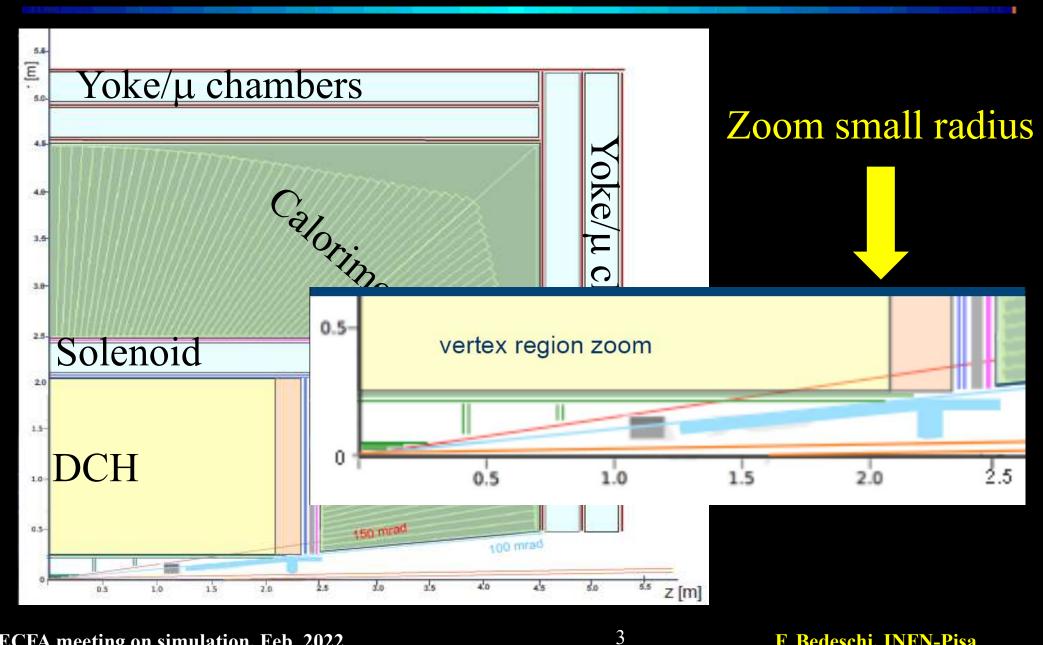

> 2m deep/8 λ

Muon chambers

▶ µRwell

ECFA meeting on simulation, Feb. 2022

IDEA concept



ECFA meeting on simulation, Feb. 2022

IDEA details

ECFA meeting on simulation, Feb. 2022

I

Fast tracking simulation

FCC tracking systems still evolving

Fast tracking simulation

FCC tracking systems still evolving

Need fast turn around in evaluation of various options

- Easy implementation of modified geometry
- Easy change of detector performances

Fast tracking simulation

FCC tracking systems still evolving

Need fast turn around in evaluation of various options

- Easy implementation of modified geometry
- Easy change of detector performances
- Need realistic input for fast simulation
 - Full covariance matrix
 - Dependence on pt and polar angle for generic configuration

Implementation (1)

• Track fit χ^2 linearized in the fit parameters:

$$\chi^2 = \vec{d^t} \, S^{-1} \vec{d} \simeq (\vec{d_0} - \vec{d^*} + \frac{\partial \vec{d}}{\partial \vec{p}} \cdot \Delta \vec{p})^t \, S^{-1} (\vec{d_0} - \vec{d^*} + \frac{\partial \vec{d}}{\partial \vec{p}} \cdot \Delta \vec{p})$$

d/d* = predicted/measured distance of track from wire or pixel

 $ightarrow \vec{p}$ = track parameters

> S = covariance of all measurements:

$$S_{ij} = \sigma_i^2 \,\delta_{ij} + M_{ij} \,M_{ij} = \sum_{1 \le k < \min(i,j)} (L_i - L_k)(L_j - L_k)\theta_k^2(i,j)$$

Implementation (1)

***** Track fit χ^2 linearized in the fit parameters:

$$\chi^2 = \vec{d^t} \, S^{-1} \vec{d} \simeq (\vec{d_0} - \vec{d^*} + \frac{\partial \vec{d}}{\partial \vec{p}} \cdot \Delta \vec{p})^t \, S^{-1} (\vec{d_0} - \vec{d^*} + \frac{\partial \vec{d}}{\partial \vec{p}} \cdot \Delta \vec{p})$$

> d/d* = predicted/measured distance of track from wire or pixel

- $ightarrow \vec{p}$ = track parameters
- > S = covariance of all measurements:

$$S_{ij} = \sigma_i^2 \,\delta_{ij} + M_{ij} \,M_{ij} = \sum_{1 \le k < \min(i,j)} (L_i - L_k)(L_j - L_k)\theta_k^2(i,j)$$

Parameter resolution depends only on S and derivatives:

$$C^{-1} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \vec{p} \partial \vec{p}} = A^t S^{-1} A, \text{ where } A = \frac{\partial \vec{d}}{\partial \vec{p}}$$

ECFA meeting on simulation, Feb. 2022

Implementation (2)

Simple geometry description in text file:

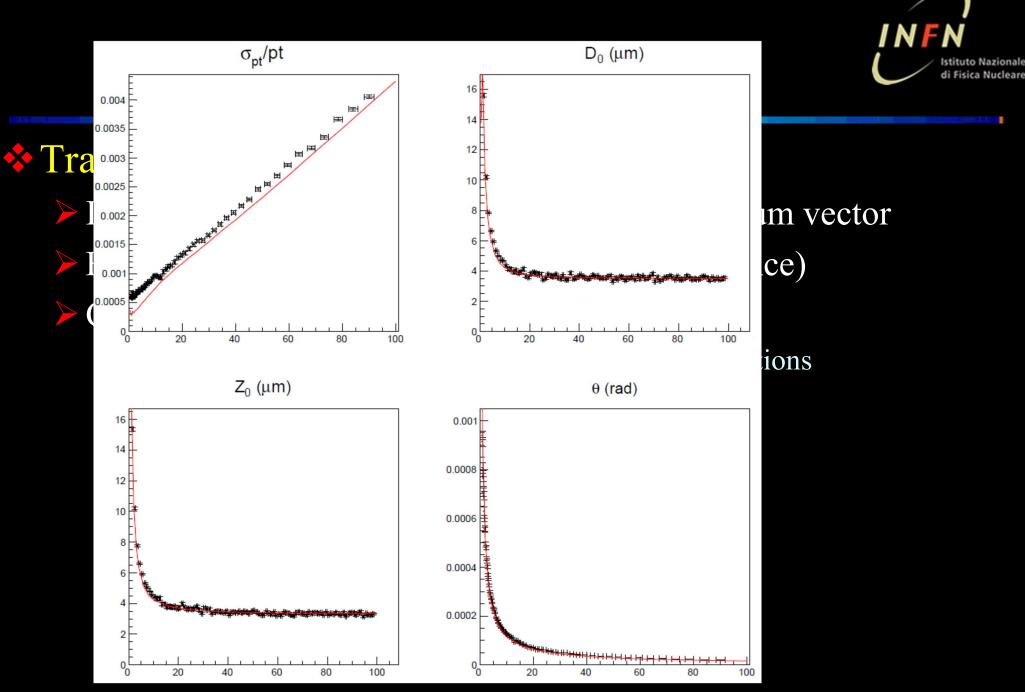
Simple geometry description in text file:

- Layer types allowed:
 - Cylinder shell (const R) or disk (constant z)
 - Measurement or inert (for MS)
 - Measurement is axial $(R\phi)$, <u>small angle stereo</u>, 90 deg. (Rz) or pixel

Simple geometry description in text file:

- Layer types allowed:
 - Cylinder shell (const R) or disk (constant z)
 - Measurement or inert (for MS)
 - Measurement is axial $(R\phi)$, <u>small angle stereo</u>, 90 deg. (Rz) or pixel

Currently implemented:


- ► IDEA in DELPHES card
- CLD (tracking only) also available in private repository

Implementation (3)

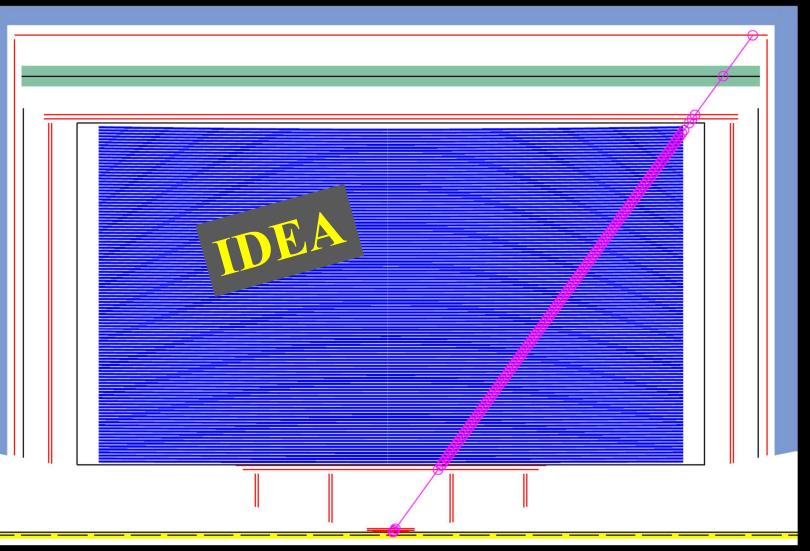
7

Track handling:

- Finitialize with \vec{x} , \vec{p} : point on track and momentum vector
- Find intersection with any given layer (acceptance)
- Calculates helix parameter covariance matrix
 - Include multiple scattering contributions with correlations

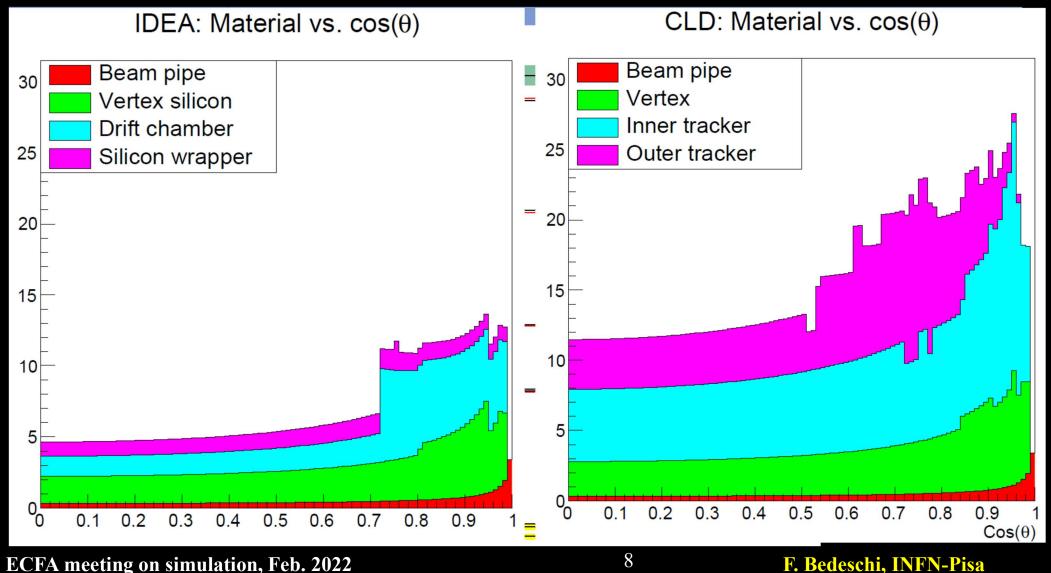
Covariance calculation x-checked with full simulation

7

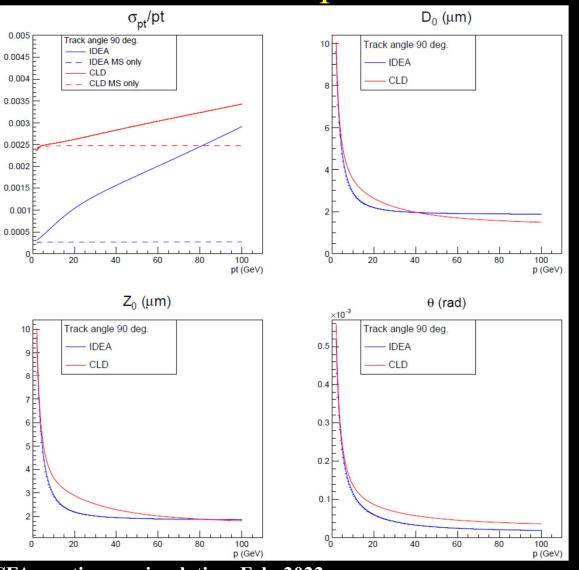

ECFA meeting on simulation, Feb. 2022

Implemented geometry and material summary

Implemented geometry and material summary


Implemented geometry and material summary

8

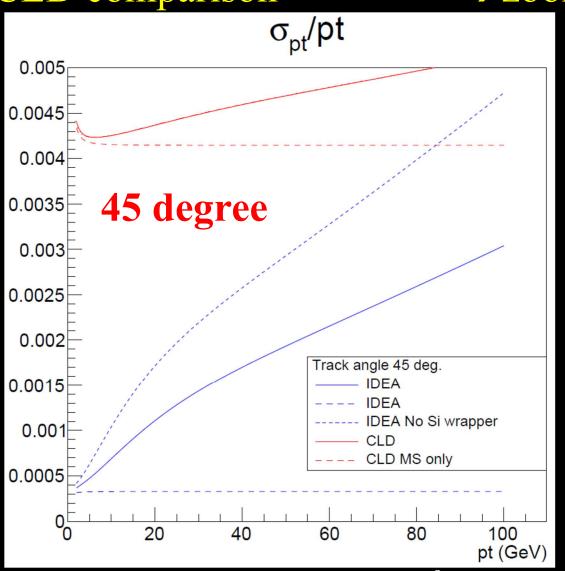


Implemented geometry and material summary

IDEA / CLD comparison

ECFA meeting on simulation, Feb. 2022

9



IDEA / CLD comparison

 \rightarrow zoom pt resolution σ_{pt}/pt 0.005 Track angle 90 deg. IDEA 0.0045 IDEA IDEA No Si wrapper CLD 0.004 CLD MS only 0.0035 0.003 0.0025 0.002 0.0015 **90 degree** 0.001 0.0005 0 100 20 40 60 80 pt (GeV) F. Bedeschi, INFN-Pisa

IDEA / CLD comparison

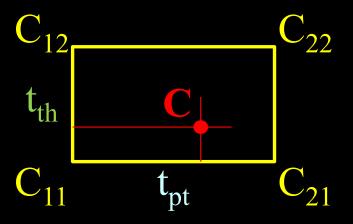
\rightarrow zoom pt resolution

ECFA meeting on simulation, Feb. 2022

Make it faster

Calculation of covariance matrix slow for IDEA
 Involves inversion of matrix ~ 120x120

Make it faster



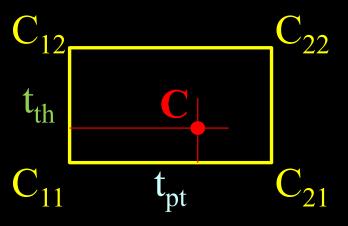
Calculation of covariance matrix slow for IDEA

> Involves inversion of matrix $\sim 120 \times 120$

Solution:

- Store pt-polar angle grid of matrices in .root file
- Get any matrix by bi-linear interpolation over 2D-grid ($p_t \theta$)

Make it faster



Calculation of covariance matrix slow for IDEA

> Involves inversion of matrix $\sim 120 \times 120$

Solution:

- Store pt-polar angle grid of matrices in .root file
- Get any matrix by bi-linear interpolation over 2D-grid ($p_t \theta$)

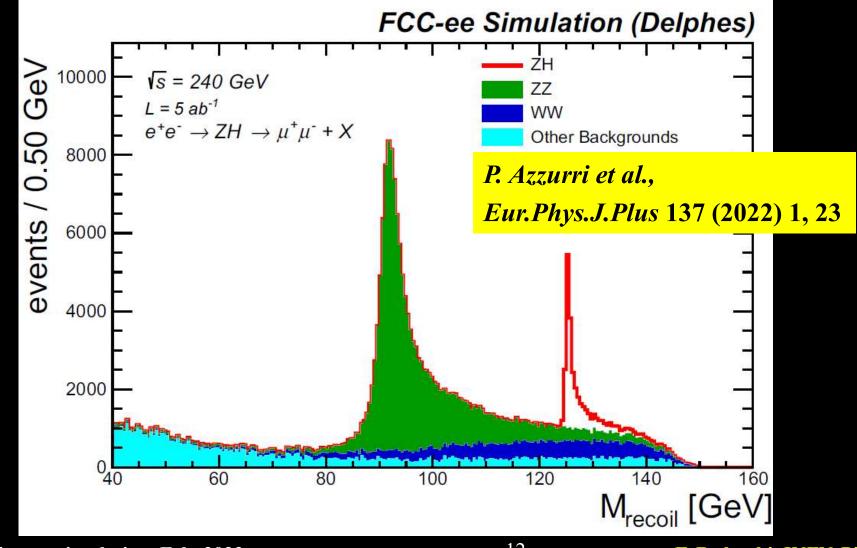
Keep full calculation for tracks originating far from IR
 Deal with long lived particles
 ECFA meeting on simulation, Feb. 2022
 F. Bedeschi, INFN-Pisa

Application to simulation

Track handling:

- \blacktriangleright Perfect track \rightarrow observed track
 - Check acceptance
 - Get covariance matrix from interpolation or full calculation

Smear helix parameters according to covariance matrix using Choleski decomposition


- C = Covariance matrix
- $C = U^T U$ (U is upper triangular matrix) Choleski decomposition
- \vec{r} = vector of normal random numbers $\mu = 0, \sigma = 1$
- $\vec{x} = U^T \vec{r} \rightarrow \vec{x}$ has covariance C. Proof:

 $Cov(\vec{x}) = \langle \vec{x} \cdot \vec{x}^T \rangle = U^T \langle \vec{r} \cdot \vec{r}^T \rangle U = U^T I U = U^T U = C$

Example (3)

• Higgs recoil from HZ $(Z \rightarrow \mu^+ \mu^-)$

ECFA meeting on simulation, Feb. 2022

Vertex finding/fitting


- Simple class for vertex fitting for post-processing DELPHES simulated events (external/TrackCovariance/VertexFit.cc)
 - Input: array of tracks (parameters + covariance matrices)
 - $\blacksquare Only charged \rightarrow assume simple helix$
 - Output:
 - Vertex + associated covariance matrix
 - Chi2 and chi2 contribution of each track
 - Additional features:
 - External gaussian constraint
 - Add/Remove track

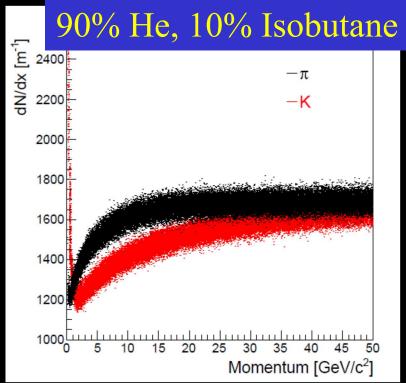
Simple root macro to find primary vertex:

ExamplePVtxFind.C included in DELPHES repository

Simple class for vertex fitting for post-processing

Istituto Nazionale di Fisica Nucleare

PID (1)

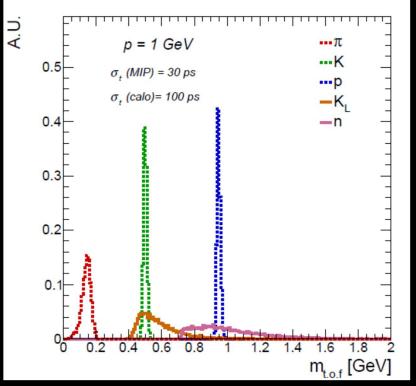

Cluster counting:

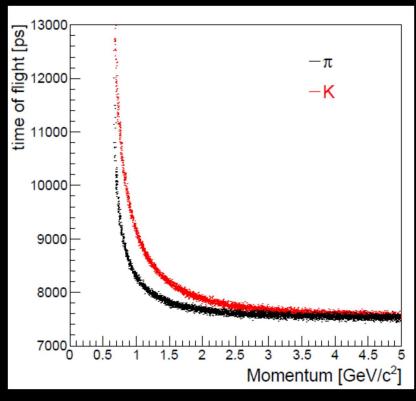
Count # ionization clusters in drift chamber gas

- $\sim 2x$ better than dE/dx
- # clusters/length vs βγ from HEED simulation embedded in Garfield++

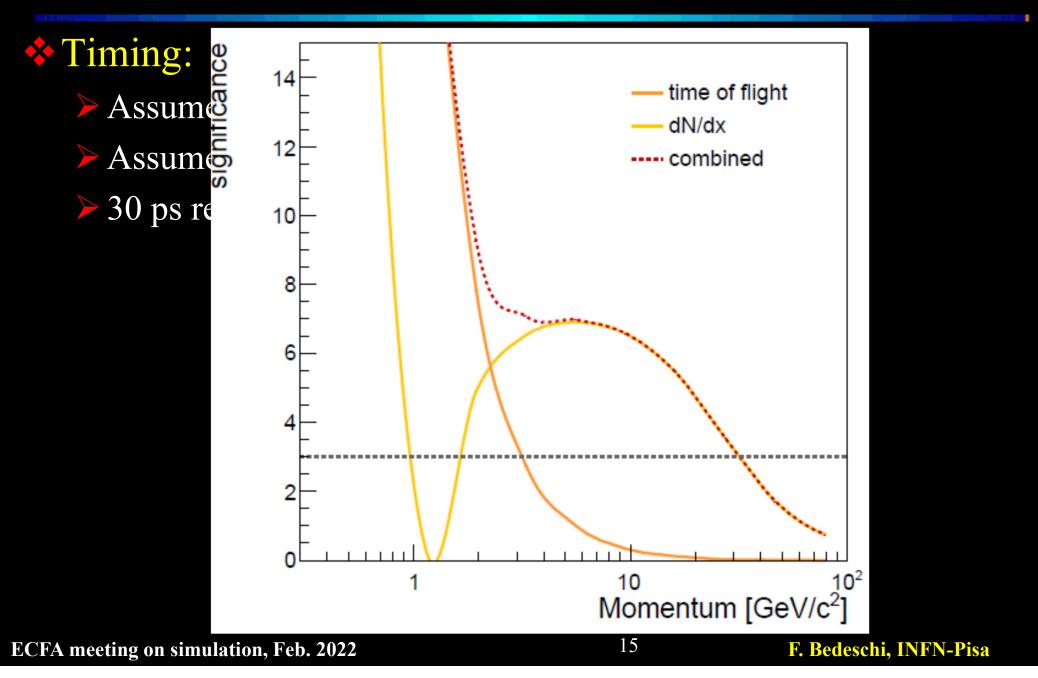
Procedure:

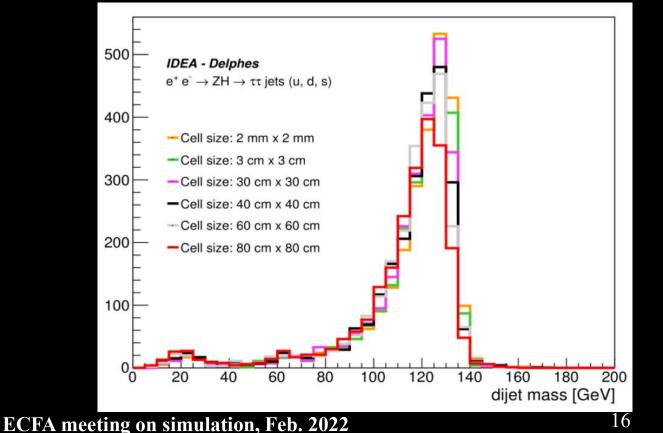
- Get track length in gas volume
- **Avg.** # clusters from $\beta\gamma$
- Extract from Poisson distribution

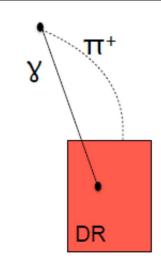




Timing:


- Assume timing layers at end of tracking volume
- Assume track starting vertex has negligible error
- 30 ps resolution for charged/ 100 ps for neutrals

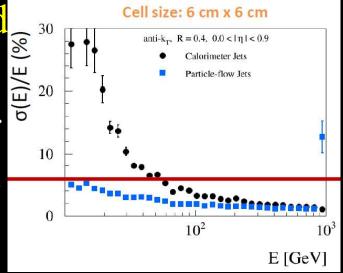



DR calorimetry

Approximate simulation of a complex detector

- Define virtual towers (optimal 6x6 cm²)
- Assign EM resolution if only e, γ hit tower
 - Assign HAD resolution if at least a hadron hits the tower

DR calorimetry


Approximate simulation of a complex d
 Define virtual towers (optimal 6x6 cm²)
 Assign EM resolution if only e, γ hit tower
 Assign HAD resolution if at least a hadron

Case 1: tower energy consistent with tracks only
Use track momentum measurement

Case 2: tower energy consistent with track+neutrals

Use calorimeter tower energy

Conclusion

I

IDEA detector fully implemented in DELPHES

ECFA meeting on simulation, Feb. 2022

Conclusion

 IDEA detector fully implemented in DELPHES
 Realistic fast tracking and timing modules can be used for any detector concepts

Conclusion

- IDEA detector fully implemented in DELPHES
- Realistic fast tracking and timing modules can be used for any detector concepts
- Cluster counting is also general for any gas detector including a large TPC

I

R 12

Implementation details

Typical geometry block

```
//
// Vertex detector (inner)
if (fEnable[1])
```

{

```
const Int_t NIVtx = 3;
Double_t rVtx[NIVtx] = { 1.7, 2.3, 3.1 };
Double_t IVtx[NIVtx] = { 11.0, 15.0, 20.0 };
for (Int_t i = 0; i < NIVtx; i++)
```

```
{
```

```
ftyLay[fNlay] = 1;
fxMin[fNlay] = -IVtx[i] * 1.e-2;
fxMax[fNlay] = IVtx[i] * 1.e-2;
frPos[fNlay] = rVtx[i] * 1.e-2;
fthLay[fNlay] = 280.E-6;
frILay[fNlay] = 9.370e-2;
fnmLay[fNlay] = 9.370e-2;
fnmLay[fNlay] = 2;
fstLayU[fNlay] = 0;
fstLayU[fNlay] = 0;
fstLayU[fNlay] = 0;
fstLayU[fNlay] = 4.E-6;
fsgLayU[fNlay] = 4.E-6;
ffILay[fNlay] = kTRUE;
fNlay++; fBlay++;
fNm++;
```

// Assume 3 vertex pixel layers
// Vertex layer radii in cm
// Vertex layer half length in cm

```
// Layer type 1 = R (barrel) or 2 = z (forward/backward)
// Minimum dimension z for barrel or R for forward
// Maximum dimension z for barrel or R for forward
// R/z location of layer
// Thickness (meters)
// Radiation length (meters)
// Number of measurements in layers (1D or 2D)
// Stereo angle (rad) - 0(pi/2) = axial(z) layer - Upper side
// Stereo angle (rad) - 0(pi/2) = axial(z) layer - Lower side
// Resolution Upper side (meters) - 0 = no measurement
// Resolution Lower side (meters) - 0 = no measurement
// measurement flag = T, scattering only = F
```

}

}

Beam energy spread

Courtesy of P. Janot (FCC week 2018 – Amsterdam)

Z pole scan strategy and \sqrt{s} spread measurement

	Z	W	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	175-182.5
arc cell optics	60/60	60/60	-99/99-	90/90
emittance hor/vert [nm]/[pm]	0.27/1.0	0.84/1.7	0.63/1.3	1.4/2.8
β* horiz/vertical [m]/[mm]	0.15/.8	0.2/1	0.3/1	1/1.6
SR energy loss / turn (GeV)	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.10	0.75	2.0	8.8-10.3
energy acceptance [%]	±1.3	±1.3	±1.7	±2.4-2.8
energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.165	0.099 / 0.165	0.15 / 0.20
bunch length (SR / BS) [mm]	3.5/12.1	3.0/7.5	3.15/5.3	2.75/3.80
bunch intensity [1011]	1.7	2.3	1.8	3.2-3.35
no. of bunches / beam	16640	1300	328	40-33
beam current [mA]	1390	147	29	6.4-5.4
SR total power [MW]	100	100	100	100
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	230	34	8.5	1.9-1.7
luminosity lifetime [min]	70	24	18	25
allowable asymmetry [%]				

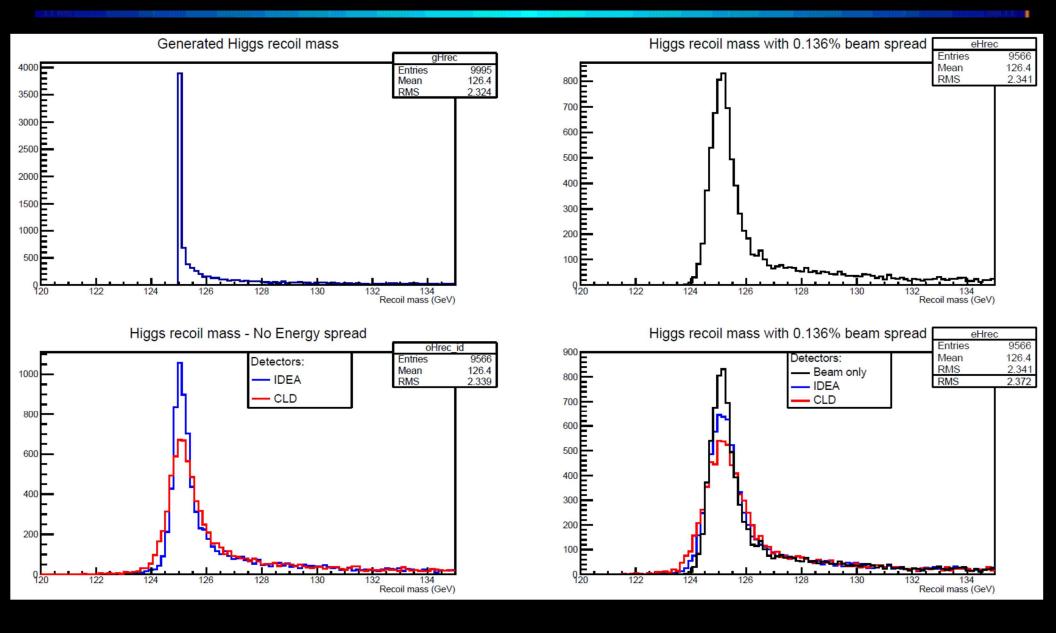
$$\sigma_{\text{beam}} = 0.165\%$$

$$\sigma_{\sqrt{s}} = \sigma_{\text{beam}} / \sqrt{2}$$

$$= 0.136\%$$

Patrick Janot

<


FCC Week in Amsterdam 10 Apr 2018

ECFA meeting on simulation, Feb. 2022

1

Higgs from Z recoil

ECFA meeting on simulation, Feb. 2022