

HEP detector description supporting the full experiment life cycle

Basic overview and concepts
Simulation topics
Conclusions

M.Frank, F.Gaede, M.Petric, A.Sailer

This project l * * * Union's Hor programme

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN February 2nd, 2022

Motivation and Goal

- Develop a detector description
 - For the full experiment life cycle
 - detector concept development, optimization
 - detector construction and operation
 - "Anticipate the unforeseen"
 - Consistent description, single source, supporting
 - simulation, reconstruction, analysis
 - Full description, including
 - Geometry, readout, alignment, calibration etc.

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

DD4her

Philosophy of DD4hep & Co

Effort of very few people with a simple, humble and comprehensive vision

Detector description for the lazy Minimal effort, pragmatic, no technical restrictions, No religious wars

- DD4hep is the "glue"
 - Bring together what belongs together:
 - **Detector structure, geometry, simulation, conditions, etc**
 - Reuse existing modules: TGeo, Geant4, Assimp, etc
- 'Responsible' users highly welcome
- Contributions even more !

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

What is Detector Description ?

- Tree-like hierarchy of "detector elements"
 - Macroscopic (ie. not a strip)
 - Subdetectors or parts of subdetectors
- Detector Element
 - Geometry
 - Access to auxiliary data
 - Environmental data
 - Alignments
 - Derivatives of these
 - Optionally experiment, subdetector or activity specific data

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

DD4Hep - The Big Picture

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Saga in 6 Episodes

- DD4hep basics/core ⁽¹⁾
- DDG4 Simulation using Geant4 ⁽¹⁾
 - Fast simulation ⁽⁴⁾
- DDRec Reconstruction supp.⁽²⁾
- DDCond Detector conditions ⁽³⁾
- DDAlign Alignment support ⁽³⁾
- DDDigi Generic Digitization ⁽⁴⁾

⁽¹⁾ Mature state: bug-fixes and maintenance
 ⁽²⁾ F. Gaede (WP3, Task 3.6)
 ⁽³⁾ Work since start of AIDA²⁰²⁰
 ⁽⁴⁾ Planned extensions

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

DD4hep Core

- Handles the detector element functionality
- Objects are fully reflective using Cling
 - C++ dictionary defined
 - Intrinsic support for cross-language development
 - Interactivity supported by ROOT (Cling, python-cppyy)

CHEP2013: DD4hep: A Detector Description Toolkit for High Energy Physics Experiments

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Main Entities

- Geometrical hierarchy
 - Volume: Shape + Material
 - PlacedVolume Volume + placement matrix → mother
- Structural hierarchy
 - Detector Experiment
 - DetElement Parts of the experiment
- The Structural hierarchy is what is normally in our imagination
- What is the difference between geometrical and structural hierarchy
- Remarks about the importance how to design such hierarchies

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Example: ALEPH TPC

DD4hep

\$> geoDisplay -input examples/AlignDet/compact/AlephTPC.xml

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

How to Define a Hierarchy

- We want reasonable hierarchies
 - Balanced trees: 5-20 children, NOT thousands
 - Important particularly for geometry: Geant4 will have the same layout and tracking with many daughters is expensive
- Structural hierarchy must fit the needs of reconstruction, calibration and analysis
- Hierarchy should be as simple as possible, but as complicated as necessary

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

- Need to compute all matrices from the highest node shifted
- The deeper the hierarchy, the more matrices to be computed

Views & Extensions: Users Customize Functionality

DD4hep is based on handles (smart pointers)

- Rarely deal with data directly
- Possibility of many views based on the same DE data
 - Same 'data' associated to different 'behaviors'
 - All views are consistent and creation is efficient: pointer-copy
- Possibility to extend data
 - Be prudent: a blessing and a curse
 - User data are common knowledge!

Reconstruction

DD4hep

Simulation

Simulation: DDG4

- Simulation
- Geometry +
 Detector response +
 Physics
- Mature status
 - Eventual bug fixes, smaller improvements
 - Phase of constant re-validation
- Automatic geometry conversion
 - Can be used also standalone in external frameworks (CMS, LHCb, FCC)
- Palette of standard sensitive detectors
- Support for MC truth handling

CHEP 2015: DDG4 A Simulation Framework based on the DD4hep Detector Description Toolkit

Geant4 Provided Hooks

[and what we want to do inside]

Main issue: flexible configuration

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Example of an Action Sequence Event Overlay with Features

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Another Example: MC Truth Handling (LC specific algorithm)

DD4hep

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

External Framework Support

- 2 possibilities
 - DDG4 (Geant4) takes over event loop from framework
 - Framework steers event loop (overloading run manager)
- Everything is a plugin (or could be made one)
 - External frameworks can overload all central entities
 - G4RunManager
 - Geant4 action routines
 - Physics ...
- External framework context
 - Typed pointer available to every user action
 - User defined structure allows to interact with any framework service: histograms, I/O, etc.

DDG4 in Production

- Example from CLICdp
 - For multiple detector studies
- ILC started mass production

Standard Detector Palette DDDetectors

- Used for design studies (LC, FCC-eh)
- Origin from the SiD detector model
 - Layer/disk based trackers
 - Layered tracker barrel & endcap
 - Several calorimeter constructs
 - Partially with measurement surfaces (F. Gaede)
 - Uses plugin mechanism to enhance detector elements
 - Non intrusive mechanism to attach user defined optional data => <u>'anticipate the unforeseen'</u>
- Sensitive volumes identified by CellID: up to the pixel
 - Sensitive volume path reduced to 64 bit number (CellID)
 - CellID in simulated hit + detector description → placement

CAD Import, Export and Round-Trips

DD4hep

- If supported by Assimp, DD4hep supports
 - Import of shapes/volumes defined in CAD files into DD4hep
 - Export of partial geometries to CAD format

Import from CAD (STL)

CAD: Limitations and Remarks

- CAD Meshes are complex
 - Limitation of the total number of manageable vertices/facets
- CAD comes in many dialects
 - Assimp supports many formats: STL, MD2/3/4, Collada, X3D, ...
 For details see: https://github.com/assimp/assimp/tree/master/code/AssetLib
 - Single mesh CAD, multiple mesh CAD
 - Not all support materials, visualization attributes etc.
 Need to be injected by import mechanism

CAD: Limitations and Remarks

- CAD Meshes are complex
 - Limitation of the total number of manageable vertices/facets
- CAD comes in many dialects
 - Assimp supports many formats: STL. MD2/3/4. Collada. X3D. ...

m

IS

Dr

CAD: Limitations and Remarks

- CAD Meshes are complex
 - Limitation of the total number of manageable vertices/facets
- CAD comes in many dialects
 - Assimp supports many formats: STL, MD2/3/4, Collada, X3D, ...
 For details see: https://github.com/assimp/assimp/tree/master/code/AssetLib
 - Single mesh CAD, multiple mesh CAD
 - Not all support materials, visualization attributes etc.
 Need to be injected by import mechanism
- Round-trips are not unambiguously reversible
 - Example: Tube => Tessellated cannot be converted back
- Include complicated passive shapes undergoing complicated machining

CHEP 2021: Tessellated Shapes, CAD Volumes and new Developments in DD4hep

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Toolkit Users

Increasing interest in the HEP community

- ILD F. Gaede et al.
- CLICdp A. Sailer et al.
- SiD D. Protopopescu et al.
- FCC-eh P. Kostka et al.
- FCC-hh A. Salzburger et al.
- FCC-ee O. Viazlo (CLD design), N. Alipour, G. Voutsinas
- SCTF Super-Charm-Tau Factory designs (Novosibirsk, Bejing)
- EIC/Athena W. Armstrong et al.
- CEPC Used for design studies (W. Li et al., IHEP)
- CALICE Calorimeter R&D, started
- LHCb Upgrade for Run III (B.Couturier et al.)
 - CMS Usage for upgrade CHEP2020 (C.Vuosalo et al.)

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Rules Learned from Client Support

DD4hep

- Linear Collider Community
 - Participation in development: By construction no conflicts
- CMS
 - Active participation in meetings etc: quite smooth transition
 - Required extensions: Reflections, LH coordinate systems, ...
- LHCb
 - Attempts to tweak DD4hep and components
- FCC (and nearly all other)
 - Smooth, eventual participation in meeting for topical problems
 - Help to accommodate ACTS

Basic lesson: If you need to extensively tweak a tool, think twice before you use it!

Summary

- I hope I could give you some short introduction how to use DD4hep to build a Detector
- Some insights on DD4hep's view to simulation
- Visit us on:
 - http://dd4hep.cern.ch
 - Up to date doxygen information
 - User Manuals: have improved but not perfect

Questions and Answers

 Δ

Class Diagram: Detector Element Sort of Standard...

DD4hep

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

Velo Pixel: One Side

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

ILD Model ILD_01_v05

(F.Gaede, L.Shaojun)

DD4hep

DDSim/IL

Δ

ILD_o1_v05 in DD4hep

<detector name="HcalEndcap"
type="SHcalSc04_Endcaps"
readout="HcalEndcapsCollection">

<detector name="Coil"
type="SCoil02">

<detector name="HcalBarrel"
type="SHcalSc04_Barrel"
readout="HcalBarrelRegCollection">

<detector name="BeamCal" type="BeamCal" readout="BeamCalCollection">

<detector name="EcalEndcap"
type="SEcal04_Endcap"
readout="EcalEndcapCollection">

<detector name="EcalBarrel" type="SEcal04_Barrel" readout="EcalBarrelCollection">

ECFA Higgs Factories: 1st Topical Meeting on Simulation, Markus Frank / CERN

SCTF - Novosibirsk

L. Shekhtman, A. Sokolov, Vijayanand KV, T. Maltsev Budker Institute of Nuclear Physics (BINP)

Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris

Inner Tracker CGEM DD4hep simulation E 200 E 200 on's hits in solid $p_{-} = 50 \text{ MeV/c}$ p_ = 55 MeV/c > > 150 150 100 100 50 50 0 0 -50 -50 -100 -100 -150 -150--200 -200-200-150-100200 -200 -150 -100 200 x [mm] x [mm]

- Pions with momenta less than 50 MeV/c do not pass through the beampipe
- Starting from p_{π} = 55 MeV/c two layers can be reached by pions

12

Xiaorong Zhou State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris

Progress on detector simulation

- STCF software team has been formed.
- OSCAR: Offline Software of Super Tau-Charm Facility.
- Detector geometry with DD4hep.

18