Spin polarization dynamics in the non-boost invariant background

Sophys Gabriel

gabriel.sophys@ifj.edu.pl

Department of Theory of Structure of Matter (NZ41) at IFJ PAN

Zimanyi School 2021

Collaborators:

Wojciech Florkowski (IF UJ), Radoslaw Ryblewski (IFJ PAN) and Rajeev Singh (IFJ PAN)

Related papers: 1901.09655 & 2112.01856 Supported by IFJ PAN and NCN Grants No. 2018/30/E/ST2/00432

Recall about the Spin Polarization Measurement

More details in Rajeev Singh' Talk

In 2017, a Nature reference,

Nature 548, 62 (2017)

- Have been first positive measurements of global spin polarization of Λ hyperons particles.
- Agreement between experiment and models based on local thermodynamic equilibrium of spin degrees of freedom.

0711.1253, 1304.4427, 1303.3431, 1501.04468, 1610.02506, 1610.04717, 1605.04024, 1703.03770 and others

 However, still a lot of work to be done concerning the Longitudinal Spin Polarization.

Study the Quark Gluon Plasma (QGP) with our approach

- 1 Include **spin degrees of freedom** into the ideal standard hydrodynamics to form **spin hydrodynamics** formalism.
- 2 Using the different **law conservations** to generate the perfect fluid evolution in time.
- 3 Using the **conservation of spin** to generate the spin evolution using the hydrodynamic background.
- 4 Determination of the **Pauli-Lubański** (PL) vector on the freeze-out hypersurface.
- **5** Calculation of **momentum dependent** and **momentum integrated** spin polarization of particles in their rest frame which can be directly compared with the experimental findings.

Introduction & Recall

More details in Rajeev Singh's Talk

Perfect Fluid Background

 Conservation of Net Baryon **Density**

$$\partial_{\alpha}N^{\alpha}(x)=0$$
,

 Conservation of Energy and linear Momentum

$$\partial_{\alpha}T^{\alpha\beta}(x)=0,$$

 \Rightarrow 5 Unknowns + 5 Equations = 1 Answer! Evolution of T, μ , U_x , U_y and ϑ

 $U^{\mu} = (U_0 \cosh[\Phi], U_x, U_y, U_0 \sinh[\Phi])$ where $\Phi = \vartheta + \eta$ is the fluid rapidity and ϑ describing the deviations of the flow from the boost-invariant form

$$U_0 = \sqrt{1 + U_x^2 + U_y^2}$$

Conservation Laws

Introduction & Recall

More details in Rajeev Singh's Talk

Perfect Fluid Background

Conservation of Net Baryon Density

$$\partial_{\alpha}N^{\alpha}(x)=0$$
,

 Conservation of Energy and linear Momentum

$$\partial_{\alpha}T^{\alpha\beta}(x) = 0$$
,

⇒ 5 Unknowns + 5 Equations = 1 Answer! Evolution of T, μ , U_x , U_y and ϑ

 $U^{\mu} = (U_0 \cosh[\Phi], U_x, U_y, U_0 \sinh[\Phi])$ where $\Phi = \vartheta + \eta$ is the fluid rapidity and ϑ describing the deviations of the flow from the boost-invariant form

Spin Evolution

• Conservation of Spin

$$\partial_{\alpha}S^{\alpha,\beta\gamma}(x)=0\,,$$

$$U_0 = \sqrt{1 + U_x^2 + U_y^2}$$

Conservation Laws

More details in Rajeev Singh's Talk

Perfect Fluid Background

Conservation of Net Baryon Density

$$\partial_{\alpha}N^{\alpha}(x)=0$$
,

• Conservation of **Energy and linear Momentum**

$$\partial_{\alpha}T^{\alpha\beta}(x)=0,$$

 \Rightarrow 5 Unknowns + 5 Equations = 1 Answer!

Evolution of T, μ , U_x , U_y and ϑ

 $\omega^{\beta\gamma},\,\omega^{\delta}$ and κ^{ϵ} contain C_{κ} and C_{ω} components

Spin Evolution

• Conservation of **Spin**

$$d_{\alpha} \left[\mathcal{A}_1 U^{\alpha} \omega^{\beta \gamma} + \mathcal{A}_2 U^{\alpha} U^{[\beta} \kappa^{\gamma]} + \right]$$

$$\mathcal{A}_{3}\left(U^{\left[\beta_{\mathbf{\omega}}^{\gamma\right]\alpha}+g^{\alpha\beta}\kappa^{\gamma\right]}\right)=0$$

⇒ 6 Unknowns + 6 Equations = Other Answer!

Evolution of $C_{\kappa X}$, $C_{\kappa Y}$, $C_{\kappa Z}$, $C_{\omega X}$, $C_{\omega Y}$ and $C_{\omega Z}$

$$U_0 = \sqrt{1 + U_x^2 + U_y^2}$$

 $U^{\mu} = (U_0 \cosh[\Phi], U_x, U_y, U_0 \sinh[\Phi])$ where $\Phi = \vartheta + \eta$ is the fluid rapidity and ϑ describing the deviations of the flow from the boost-invariant form

The famous 6 spin components

Relation with Electromagnetic components

$$\begin{split} &U^{\mu} = \left(U_0 \cosh[\Phi], U_x, U_y, U_0 \sinh[\Phi]\right) \\ &X^{\mu} = \left(U_1 \cosh[\Phi], \frac{U_0 \times U_x}{U_\perp}, \frac{U_0 \times U_y}{U_\perp}, U_\perp \sinh[\Phi]\right) \\ &Y^{\mu} = \left(0, -\frac{U_y}{U_\perp}, \frac{U_x}{U_\perp}, 0\right) Z^{\mu} = \left(\sinh[\Phi], 0, 0, \cosh[\Phi]\right) \end{split}$$

 $\omega_{\mu\nu}$ is the spin polarization tensor and can be parameterized by the four-vectors κ^{μ} and ω^{μ} ,

$$\omega_{\mu\nu} = \kappa_{\mu}U_{\nu} - \kappa_{\nu}U_{\mu} + \varepsilon_{\mu\nu\alpha\beta}U^{\alpha}\omega^{\beta},$$

where
$$\kappa^{\alpha} = C_{\kappa X} X^{\alpha} + C_{\kappa Y} Y^{\alpha} + C_{\kappa Z} Z^{\alpha}$$
, $\omega^{\alpha} = C_{\omega X} X^{\alpha} + C_{\omega Y} Y^{\alpha} + C_{\omega Z} Z^{\alpha}$.

The famous 6 spin components

Relation with Electromagnetic components

$$\begin{split} &U^{\mu} = \left(U_0 \cosh[\Phi], U_x, U_y, U_0 \sinh[\Phi]\right) \\ &X^{\mu} = \left(U_1 \cosh[\Phi], \frac{U_0 \times U_x}{U_\perp}, \frac{U_0 \times U_y}{U_\perp}, U_\perp \sinh[\Phi]\right) \\ &Y^{\mu} = \left(0, -\frac{U_y}{U_\perp}, \frac{U_x}{U_\perp}, 0\right) Z^{\mu} = \left(\sinh[\Phi], 0, 0, \cosh[\Phi]\right) \end{split}$$

 $\omega_{\mu\nu}$ is the spin polarization tensor and can be parameterized by the four-vectors κ^{μ} and ω^{μ} ,

$$\omega_{\mu\nu} = \kappa_{\mu}U_{\nu} - \kappa_{\nu}U_{\mu} + \varepsilon_{\mu\nu\alpha\beta}U^{\alpha}\omega^{\beta},$$

where
$$\kappa^{\alpha} = C_{\kappa X} X^{\alpha} + C_{\kappa Y} Y^{\alpha} + C_{\kappa Z} Z^{\alpha}$$
, $\omega^{\alpha} = C_{\omega X} X^{\alpha} + C_{\omega Y} Y^{\alpha} + C_{\omega Z} Z^{\alpha}$.

Physics of C's components

$$\begin{split} C_{\kappa X} &= e^1 \cosh(\vartheta + \eta) - b^2 \sinh(\vartheta + \eta), \\ C_{\omega Y} &= b^2 \cosh(\vartheta + \eta) - e^1 \sinh(\vartheta + \eta), \\ C_{\kappa Y} &= e^2 \cosh(\vartheta + \eta) + b^1 \sinh(\vartheta + \eta), \\ C_{\omega X} &= b^1 \cosh(\vartheta + \eta) + e^2 \sinh(\vartheta + \eta), \\ C_{\kappa Z} &= e^3, \quad C_{\omega Z} = b^3. \end{split}$$

Contents

- Introduction & Recal
- 2 Non Boost-Invariant Case Initial Conditions Perfect-Fluid and Spin evolution
- 3 Polarization Calculations
- 4 Results and Discussions
- **5** Outlook and Perspectives

- System transversely homogeneous and undergoing a non-trivial dynamics along the beam (z) direction.
- Translational invariance in the transverse plane $\Rightarrow U^{\mu}$ has vanishing x and y components.

System with non-boost invariant flow

- System transversely homogeneous and undergoing a non-trivial dynamics along the beam (z) direction.
- Translational invariance in the transverse plane $\Rightarrow U^{\mu}$ has vanishing x and y components.

3D+1 General case

$$\begin{split} U^{\mu} &= \left(U_0 \cosh[\Phi], U_x, U_y, U_0 \sinh[\Phi]\right) \\ X^{\mu} &= \left(U_{\perp} \cosh[\Phi], \frac{U_0 \times U_x}{U_{\perp}}, \frac{U_0 \times U_y}{U_{\perp}}, U_{\perp} \sinh[\Phi]\right) \\ Y^{\mu} &= \left(0, -\frac{U_y}{U_{\perp}}, \frac{U_x}{U_{\perp}}, 0\right) \\ Z^{\mu} &= \left(\sinh[\Phi], 0, 0, \cosh[\Phi]\right) \end{split}$$

1D+1 Non-Boost Case

$$U^{\mu} = (\cosh[\Phi], 0, 0, \sinh[\Phi])$$

$$X^{\mu} = (0, 1, 0, 0)$$

$$Y^{\mu} = (0, 0, 1, 0)$$

$$Z^{\mu} = (\sinh[\Phi], 0, 0, \cosh[\Phi])$$

Initial Conditions for Background

 Θ is the Heaviside Function

Initialization of **Energy Density** \rightarrow **Temperature**:

$$\mathcal{E}_0(\eta) = \frac{\mathcal{E}_0^c(T_0)}{2} \left[\Theta(\eta) \Big(\tanh(a - \eta b) + 1 \Big) + \Theta(-\eta) \Big(\tanh(a + \eta b) + 1 \Big) \right]$$

- Initialization of Net-Baryon Density → Baryon Chemical Potential: No Chemical Potential
- Initialization of **Rapidity**: Bjorken Flow $\rightarrow \vartheta = 0$
- Non-Boost Invariance case in 1D+1 \Rightarrow No flow projected on X and Y

Initial Conditions

Initial Conditions for Spin

Recall

$$C_{\kappa X} = e^{1} \cosh(\vartheta + \eta) - b^{2} \sinh(\vartheta + \eta),$$

$$C_{\omega Y} = b^{2} \cosh(\vartheta + \eta) - e^{1} \sinh(\vartheta + \eta),$$

$$C_{\kappa Y} = e^{2} \cosh(\vartheta + \eta) + b^{1} \sinh(\vartheta + \eta),$$

$$C_{\omega X} = b^{1} \cosh(\vartheta + \eta) + e^{2} \sinh(\vartheta + \eta),$$

$$C_{\kappa Z} = e^{3}, \quad C_{\omega Z} = b^{3}.$$

Initial Conditions

Initial Conditions for Spin

Recall

$$C_{\kappa X} = e^{1} \cosh(\vartheta + \eta) - b^{2} \sinh(\vartheta + \eta),$$

$$C_{\omega Y} = b^{2} \cosh(\vartheta + \eta) - e^{1} \sinh(\vartheta + \eta),$$

$$C_{\kappa Y} = e^{2} \cosh(\vartheta + \eta) + b^{1} \sinh(\vartheta + \eta),$$

$$C_{\omega X} = b^{1} \cosh(\vartheta + \eta) + e^{2} \sinh(\vartheta + \eta),$$

$$C_{\kappa Z} = e^{3}, \quad C_{\omega Z} = b^{3}.$$

Initially, there is **no Rapidity**
$$\rightarrow \vartheta = 0$$
.
Also $e^3 \& b^3 = 0$
$$\begin{cases} C_{\kappa Z} = C_{\omega Z} = C_{\kappa Y} = C_{\omega X} = 0 \end{cases}$$

That leads to few initial conditions but we set these ones:

$$C_{\kappa X} = 0$$
 $C_{\omega Y} = b^2 \operatorname{sech}(\eta)$

Perfect-Fluid background evolution

Perfect-Fluid background evolution

-5

0

• Envelope of energy density well defined on Temperature

5

Flow increasing with rapidity, before to stabilize at forward or backward rapidities.

10

-10

Perfect-Fluid and Spin evolution

Spin evolution

Perfect-Fluid and Spin evolution

Spin evolution

- $C_{\kappa X}$ evolves quickly to vanishing at large eta as $C_{\omega Y}$
- Shape of the sech conserved during time evolutions
- Knee around $\eta \approx 5$ understood by the large mass regime of the factor m/T

Contents

- 3 Polarization Calculations Hard work and formula Last checks before results

Pauli-Lubański (PL) tool

Phase-space density of the PL four-vector Π_{ij}

$$E_{p}\frac{d\Delta\Pi_{i}(x,p)}{d^{3}p} = -\frac{1}{2}\varepsilon_{i\nu\alpha\beta}\Delta\Sigma_{\lambda}E_{p}\frac{dS^{\lambda,\nu\alpha}(x,p)}{d^{3}p}\frac{p^{\beta}}{m}.$$

Pauli-Lubański (PL) tool

Phase-space density of the PL four-vector Π_{ij}

$$E_p \frac{d\Delta \Pi_i(x,p)}{d^3 p} = -\frac{1}{2} \varepsilon_{i\nu\alpha\beta} \Delta \Sigma_\lambda E_p \frac{dS^{\lambda,\nu\alpha}(x,p)}{d^3 p} \frac{p^\beta}{m}.$$

Phase-space density of the spin tensor

$$E_{p}\frac{dS^{\lambda,\nu\alpha}}{d^{3}p} = \frac{\cosh\left(\frac{\mu}{T}\right)}{(2\pi)^{3}}e^{-\beta\cdot p}p^{\lambda}\left(\omega^{\nu\alpha} + \frac{2}{m^{2}}p^{[\nu}\omega^{\alpha}]_{\delta}p^{\delta}\right).$$

Phase-space density of the PL four-vector Π_{ij}

$$E_p \frac{d\Delta \Pi_i(x,p)}{d^3 p} = -\frac{1}{2} \varepsilon_{i\nu\alpha\beta} \Delta \Sigma_{\lambda} E_p \frac{dS^{\lambda,\nu\alpha}(x,p)}{d^3 p} \frac{p^{\beta}}{m}.$$

Phase-space density of the spin tensor

$$E_{p}\frac{dS^{\lambda,\nu\alpha}}{d^{3}p} = \frac{\cosh\left(\frac{\mu}{T}\right)}{(2\pi)^{3}}e^{-\beta\cdot p}p^{\lambda}\left(\omega^{\nu\alpha} + \frac{2}{m^{2}}p^{[\nu}\omega^{\alpha}]_{\delta}p^{\delta}\right).$$

Integrating over the freeze-out hypersurface give the total value of the momentum density of the PL four-vector

$$E_{p} \frac{d\Pi_{i}^{*}(p)}{d^{3}p} = -\frac{1}{(2\pi)^{3}m} \int \cosh\left(\frac{\mu}{T}\right) \Delta\Sigma_{\lambda} p^{\lambda} e^{-\beta \cdot p} \left(\widetilde{\omega}_{i\beta} p^{\beta}\right)^{*}.$$

means boost to the **Particle Rest Frame**.

i = (0, x, y, z) components

Spin Polarization

Mean spin polarization per particle:

$$\langle \pi_i \rangle_p = \frac{E_p \frac{d\Pi_i^*(p)}{d^3 p}}{E_p \frac{d\mathcal{N}(p)}{d^3 p}} \rightarrow \frac{\text{Total Pauli-Lubański vector}}{\text{Momentum density of all particles}}$$

$$E_{p} \frac{d\Pi_{i}^{*}(p)}{d^{3}p} = -\frac{1}{(2\pi)^{3}m} \int \cosh\left(\frac{\mu}{T}\right) \Delta\Sigma_{\lambda} p^{\lambda} e^{-\beta \cdot p} \left(\widetilde{\omega}_{i\beta} p^{\beta}\right)^{*}$$

Mean spin polarization per particle:

$$\langle \pi_i \rangle_p = \frac{E_p \frac{d\Pi_i^*(p)}{d^3p}}{E_p \frac{d\mathcal{N}(p)}{d^3p}} \rightarrow \frac{\text{Total Pauli-Lubański vector}}{\text{Momentum density of all particles}}$$

where
$$E_p \frac{d\mathcal{N}(p)}{d^3p} = \frac{4}{(2\pi)^3} \int \cosh\left(\frac{\mu}{T}\right) \Delta \Sigma_{\lambda} p^{\lambda} e^{-\beta \cdot p}$$

$$E_p \frac{d\Pi_i^*(p)}{d^3 p} = -\frac{1}{(2\pi)^3 m} \int \cosh\left(\frac{\mu}{T}\right) \Delta \Sigma_{\lambda} p^{\lambda} e^{-\beta \cdot p} \left(\widetilde{\omega}_{i\beta} p^{\beta}\right)^*$$

Mean spin polarization per particle:

$$\langle \pi_i \rangle_p = \frac{E_p \frac{d\Pi_i^*(p)}{d^3 p}}{E_p \frac{d\mathcal{N}(p)}{d^3 p}} \rightarrow \frac{\text{Total Pauli-Lubański vector}}{\text{Momentum density of all particles}}$$

where
$$E_p \frac{d\mathcal{N}(p)}{d^3p} = \frac{4}{(2\pi)^3} \int \cosh\left(\frac{\mu}{T}\right) \Delta \Sigma_{\lambda} p^{\lambda} e^{-\beta \cdot p}$$

2 Momentum averaged polarization

$$\langle \pi_i \rangle = \frac{\int d^3 p \, \frac{d\Pi_i^*(p)}{d^3 p}}{\int d^3 p \, \frac{d\mathcal{N}(p)}{d^3 p}}$$

Freeze-out conditions, last checks

Hypersurface and freeze-out time

Freeze-out conditions, last checks

Hypersurface and freeze-out time

• Concerning the **hypersurface**:

$$S_{\rm FC}^{\mu\nu} = \int \Delta \Sigma_{\lambda} \, S_{\rm GLW}^{\lambda,\mu\nu} = \int dx dy \, \tau d\eta \, \, U_{\lambda}^{\rm B} S_{\rm GLW}^{\lambda,\mu\nu}$$

Two important components using our initial conditions: S_{FC}^{13} & S_{FC}^{01}

Check if we have $S_{EC}^{13} \neq 0 \& S_{EC}^{01} = 0$ obtained by symmetry,

Freeze-out conditions, last checks

Hypersurface and freeze-out time

• Concerning the **hypersurface**:

he **hypersurface**:
$$S_{\text{FC}}^{\mu\nu} = \int \Delta\Sigma_{\lambda} S_{\text{GLW}}^{\lambda,\mu\nu} = \int dx dy \, \tau d\eta \, U_{\lambda}^{\text{B}} S_{\text{GLW}}^{\lambda,\mu\nu}$$

Two important components using our initial conditions: S_{FC}^{13} & S_{FC}^{01}

Check if we have $S_{EC}^{13} \neq 0 \& S_{EC}^{01} = 0$ obtained by symmetry,

• Concerning the **freeze-out time**:

Temperature of freeze-out set to 150 MeV without μ

Check if we reach the freeze-out temperature at all η points to define the freeze-out time.

Contents

- 1 Introduction & Recal
- 2 Non Boost-Invariant Case
- 3 Polarization Calculations
- 4 Results and Discussions

 Momentum dependent Polarization

 Momentum averaged Polarization
- Outlook and Perspectives

Quadrupole structure in the *x* component in opposite to experiments

Amplitude decreases at larger rapidity

Momentum averaged polarization of the *x* component must be equal to 0.

Momentum dependence of the polarization

Momentum dependence of the polarization

Only negative values

Amplitude decreases at larger rapidity

Momentum averaged Polarization not equal to 0.

 $p_x [\text{GeV/c}]$

 $p_x [\text{GeV/c}]$

Polar coordinates of polarization

Polar coordinates of polarization

$$p_T = \sqrt{p_x^2 + p_y^2}$$

$$\phi_p \text{ the azimuthal angle}$$

- Confirmation of decreasing amplitude in function of the rapidity,
- Confirmation of the amplitude for both rapidities,
- Expected Results and behaviors.

Momentum averaged polarization

Two ways of study

Momentum averaged polarization

Two ways of study

- Large rapidity dependence of the polarization
- Reproduction of the qualitative dependence of STAR

Two ways of study

- Large rapidity dependence of the polarization
- Reproduction of the qualitative dependence of STAR
- Linear dependence of the Initial conditions of spin components

Outlook

- Used the Non-Boost invariance case to define the initial condition of thermodynamic variables and spin components.
- Used the spin polarization tensor to calculate the spin polarization using the Pauli-Lubański vector.
- Calculated the momentum dependence of the polarization with quadrupole structure in the x-component.
- Non-zero global polarization found in the y-component.
- Found a large rapidity dependence of the momentum averaged polarization.

Perspectives

- Implement the **chemical potential**, already done in the 2112.01856, at this small values of initial **Temperature**, no large effects have been found,
- Extend to 3D+1 Case using the general expressions derived in 2112.01856.
- Implement realistic Equation of State,
- Implement realistic **Initial Conditions** for Spin and Background like Glauber to do the particlization procedure and see the effect of spin on other observables in same time (spectra, anisotropic flow, etc ...).

Perspectives

- Implement the chemical potential, already done in the 2112.01856, at this small values of initial Temperature, no large effects have been found,
- Extend to 3D+1 Case using the general expressions derived in 2112.01856,
- Implement realistic Equation of State,
- Implement realistic **Initial Conditions** for Spin and Background like Glauber to do the particlization procedure and see the effect of spin on other observables in same time (spectra, anisotropic flow, etc ...).

Thank you for your attention!

Perspectives

- Implement the chemical potential, already done in the 2112.01856, at this small values of initial Temperature, no large effects have been found,
- Extend to 3D+1 Case using the general expressions derived in 2112.01856,
- Implement realistic Equation of State,
- Implement realistic **Initial Conditions** for Spin and Background like Glauber to do the particlization procedure and see the effect of spin on other observables in same time (spectra, anisotropic flow, etc ...).

Thank you for your attention!

$$d_{\alpha}S^{\alpha,\beta\gamma} \equiv d_{\alpha} \left[\mathcal{A}_{1}U^{\alpha}\omega^{\beta\gamma} + \mathcal{A}_{2}U^{\alpha}U^{[\beta}\kappa^{\gamma]} + \mathcal{A}_{3}(U^{[\beta}\omega^{\gamma]\alpha} + g^{\alpha\beta}\kappa^{\gamma]}) \right] = 0 \text{ where}$$

$$\mathcal{A}_{1} = \cosh(\mu/T) \left(n_{(0)} - \mathcal{B}_{(0)} \right), \qquad \mathcal{A}_{2} = \cosh(\mu/T) \left(\mathcal{A}_{(0)} - 3\mathcal{B}_{(0)} \right),$$

$$\mathcal{A}_{3} = \cosh(\mu/T)\mathcal{B}_{(0)}$$
with,
$$\mathcal{B}_{(0)} = -\frac{2}{(m/T)^{2}} (\mathcal{E}_{()} + \mathcal{P}_{()}) / \mathcal{T} \text{ and } \mathcal{A}_{(0)} = -3\mathcal{B}_{(0)} + 2\mathcal{N}_{()}.$$
Here, $\omega^{\beta\gamma}$ is known as sain polarization tanger.

Here, $\omega^{\beta\gamma}$ is known as spin polarization tensor.

Spin polarization tensor:

from Rajeev Singh

 $\omega_{\mu\nu}$ is an anti-symmetric tensor of rank 2 and can be parameterized by the four-vectors κ^{μ} and ω^{μ} .

$$\omega_{\mu\nu} = \kappa_{\mu}U_{\nu} - \kappa_{\nu}U_{\mu} + \varepsilon_{\mu\nu\alpha\beta}U^{\alpha}\omega^{\beta},$$

where $\kappa^{\alpha} = C_{\kappa X} X^{\alpha} + C_{\kappa Y} Y^{\alpha} + C_{\kappa Z} Z^{\alpha}$, $\omega^{\alpha} = C_{\omega X} X^{\alpha} + C_{\omega Y} Y^{\alpha} + C_{\omega Z} Z^{\alpha}$. U, X, Y and Z form a 4-vector basis satisfying the following normalization conditions: $U \cdot U = 1$, $X \cdot X = Y \cdot Y = Z \cdot Z = -1$.

$$\omega_{\alpha\beta} = \begin{bmatrix} 0 & e^1 & e^2 & e^3 \\ -e^1 & 0 & -b^3 & b^2 \\ -e^2 & b^3 & 0 & -b^1 \\ -e^3 & -b^2 & b^1 & 0 \end{bmatrix}$$

Momentum dependence of the polarization

$$\langle x_x \rangle_p = \frac{E_p \frac{d\Pi_x^+(p)}{d^3 p}}{E_p \frac{d\mathcal{N}(p)}{d^3 p}}$$

Quadrupole structure in the z component in opposite to experiments

Amplitude decreases at larger rapidity

Momentum averaged polarization of the x component must be equal to 0.

Perfect Fluid Background

• effect of chemical potential more important at the edges in η

Chemical Potential

• Chemical potential more important at the edges in η

Spin components

- effect of chemical potential more important at the edges in η ...
- but the effect is tiny everywhere

Polarization using polar coordinates

• Momentum averaged polarization more importent at the center in rapidity and smaller at $y_p = 2$.

Momentum averaged polarization

• Momentum averaged polarization more importent at the center in rapidity and smaller at the edges.